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Annotation

We represent conditions of hydrodynamic system when it passes the Painleve test. We use
Kovaleskaya-Gambie method for fourth order odinary differential system. We obtain Lorenz-
like dynamic for this system.

Introduction

The existence of magnetic fields of planets, stars and galaxy is explained by a dynamo-
mechanism [1]. Mathematical aspects of dynamo effect are reduced to solutions of MHD equa-
tions. Nonlinear terms of these equations don’t allow to find an analytical solutions (except
private cases). Direct number simulation of 3D magnetohydrodynamics with big Reynolds
number require huge computing at supercomputers [2]. So simplified MHD systems are very
important to investigate for understanding main features of dynamo.

In the paper we discuss the analytical properties of a dynamical system, which is the
simplest model of the dynamo. We find relation between coefficients of system in order to pass
the Painleve test.

We discuss a model of process which generates the average magnetic field by a turbulence
flow of viscous incompressible fluid with the alpha effect in rotating coordinate system. It is
described by magnetohydrodynamics equations.

∂tv + Rm (v∇)v = Pm∆v −∇p− E−1Pm(ez × v) + rotB×B,

∂tB = Rmrot (v ×B) + Rαrot (αB) +△B,

∇ · v = 0,

∇ ·B = 0,

(1)

where v – the average velocity, B – the average magnetic field, p – pressure, f – mass density
of external forces, α – tensor of the α-effect, Rm – magnetic Reynolds number, E – Ekman
number, Pm – Magnetic Prandtl number, Rα – amplitude of the α-effect, ez – the unit vector
of axis of rotation.

We admit that field axially symmetric with respect to axis ez. Solenoidal fields v and B
give the sum of the toroidal and poloidal components.

We represent the following decomposition of the velocity and magnetic field into the sum
of time-dependent amplitudes and stationary poloidal (toroidal) fields products:

v = x1(t)v
T (r) + x2(t)v

P (r) ,

B = y1(t)B
T (r) + y2(t)B

P (r) .
(2)

Substitution of decomposition (2) in (1) gives system of amplitude’s equations [3]:
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dx1

dt
= RmA112x1x2 + E−1PmP12x2 + F1 + RmL112y1y2 − µ1x1,

dx2

dt
= RmA211x

2
1 + E−1PmP21x1 + F2 + RmL211y

2
1 + RmL222y

2
2 − µ2x2,

dy1
dt

= RmW112x1y2 + RmW121x2y1 + RαW1α2y2 − η1y1,

dy2
dt

= RmW222x2y2 + RαW2α1y1 − η2y2.

(3)

In the system we take into account that in the axially symmetric case the vector lines of
any poloidal field lie in planes passing through the axis of rotation, and the lines of any toroidal
field perpendicular to them. Uppercase letters denote constant coefficients. They appear after
application of Galerkin’s method to a system. Coefficients µi and ηi determine the dissipation
rate of velocity and magnetic fields modes from (2). In this case we assume P12 = −P21 and
some other relations on coefficients A112 = −A211, L112 = −W112, L211 = −W121, L222 = −W222,
µ1 = µ2, η1 = η2, F1 = 0.

System (3) is the simplest dynamo model without a kinematic effect. In this paper we
investigate its analitical properties.

Simplified ODE system

We present the Painleve test on simplified ODE system. The Painleve test is neccesary condition
for the Painleve property. The formal solution is given by Laurent series near a movable
singularity x− x0. For this aim we use Kowalevski-Gambier method [4].

Main steps of Kowalevski-Gambier method are

1. substitution u(x) = u0x
p in order to find integer value of parameter p.

2. computation coefficients u(x) = ujx
p+j for integer j. For every fixed j we have a linear

algebraic system on coefficient uj of Laurent series. If a system is consistent we have an
uniformal solution for fixed j. For some values of j system can be overdefined. In this
case coefficients of Laurent series are free. In order to determine j for which system is
overdetermined we can calculate Fuchs indices.

3. If a linear algebra system of Laurent series coefficients for each Fuchs indices is consistent
the ODE system passes Painleve test. It does not imply the Painleve property. If system
is inconsistent ODE system passes test.

Let us discuss one simplified case of (3). We suppose that L222 = L211 = W121 = W222 =
F1 = 0, F2 = M , RαW2α1 = RαW1α2 = α, P12 = K, P21 = −K, x1 = u1, x1 = u2, y1 = u3,
y2 = u4, independent variable t = x. So a reduced ODE system is















u̇1 = −λu1 +Ku2 − Lu3u4

u̇2 = −λu2 −Ku1 +M
u̇3 = Lu1u4 + αu4 − u3

u̇4 = αu3 − u4

(4)

where M,L,K, λ, α – independent parameters.
1 step. We substitute ui(x) = ui,0x

pi , i = 1..4 at system (4). Main terms give next system
on pi: p1 − 1 = p3 + p4, p2 − 1 = p1, p3 − 1 = p1 + p4, p4 − 1 = p3. Solution of the linear system
is p1 = −2, p2 = −1, p3 = −2, p4 = −1.

We find coefficients ui,0 from system of main terms for calculated values of pi, i = 1..4:
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Figure 1. One velocity and two magnetic cmponents

p1x1 = −Lx3x4, p2x2 = −Kx1, p3x3 = Lx1x4, p4x4 = αx3

From this system we get one trivial solution and four nontrivial

u1,0 =
2

Lα
,u2,0 =

2K

Lα
,u3,0 = ± 2I

Lα
,u4,0 = ±2I

L
,

where I – the imagery unit.

Let us check the first solution u3,0 =
2I

Lα
, u4,0 =

2I

L
, when u3,0, u4,0 have the same sign. In

this case Fuchs indices are irrational 0, 1, 5/2−1/2
√
17, 5/2+1/2

√
17. Because of the irrational

value we need to take u3,0, u4,0 with the different sign. For positive values of u3,0 and u4,0 the
Fuchs indices are −1, 1, 2, 4. For each Fuchs index we get 3 invariants:

Q1 =
8(λ− 1)

αL
, Q2 = −2

K2 + λ2 + 4λ− 4

Lα

Q4 = ((λ− 2) u2,1 − u2,2)K + 4
(λ− 1) (α2λ− λ3 − 2λ+ 2)

Lα
+

λ (3λ− 2) (−u2,1λ+M − u2,2)

K

Assuming Q1 = Q2 = Q4 = 0 we get next set of system’s parameters λ = 1, K = ±I,
M = 0.

General ODE system

In this case we assume P12 = −P21 and some other relations on coefficients A112 = −A211 = A,
L112 = −W112 = −L, L211 = −W121 = −P , L222 = −W222 = −Q, µ1 = µ2 = η1 = η2 = 1,
F1 = 0. For such coefficients system is more general than previos one.

u̇1 = Au1u2 +Ku2 − Lu3u4 − u1

u̇2 = −Au2
1 −Ku1 − Pu2

3 −Qu2
4 +M − u2

u̇3 = Lu1u4 + Pu2u3 + αu4 − u3

u̇4 = Qu2u3 + αu3 − u4

(5)

Let us consider the Painleve test of system (5) with A = P . First we check if the pivot
terms satisfy following equations

p1 − 1 = p1 + p2, p1 − 1 = p3 + p4, p2 − 1 = 2 p1, p2 − 1 = 2 p3, p2 − 1 = 2 p4,
p3 − 1 = p1 + p4, p3 − 1 = p2 + p3, p4 − 1 = p2 + p3
There is one case when p1 = −1, p2 = −1, p3 = −1, p4 = −1. Now we substitute expantions

ui = u0,ix
pi into pivot terms and get nonlinear system for coefficients u0,i.
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u0,1 = Iu0,3, u0,2 = (LQu0,1 − P )−1 , u0,3 =
IL+

√
−L2−4PQ

2Q2 , u0,4 = −Qu0,2u0,3

In order to simplify u0,i we put Q = −L2/(4P ). Such simplification gives a very simple
characteristic equation for the Fuchs indices j (j3 − 6 j2 + 5 j + 12). Solving equation we obtain
indicies −1, 0, 3, 4. A characteristic polynomial doesn’t depend on parameters L, P . There are
two invariants for this system. Invariants correspond to the Fuchs values j = 3 and j = 4.
Detailed analysis of the invariants gives some relations on coefficients. So L = 2P , P = 1. Free
parameters are K, α and dependent one is M . Resulting system passes the Painleve test with
α = 3, K = 2.

u̇1 = u1u2 − u1 + 2u2 − 2 u3u4,
u̇2 = −u2

1 − u2 − 2u1 − u2
3 + u2

4 +
1330
99

,
u̇3 = 2u1u4 + u2u3 + 3u4 − u3,
u̇4 = −u2u3 + 3u3 − u4

(6)

If we put value of M to zero, we get a modification of (6). Direct solutions of this system
gives periodic oscillations (fig. 1). If we keep constant force M , the periodic solutions will be
relaxation oscillations.

Conclusion

We have considered two cases of hydrodynamic system. For these systems we find sets of
parameters to satisfy the Painleve test. It is possible to check what conservation law holds for
this system.
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