УДК 551.594

ФОРМИРОВАНИЕ ЛОКАЛЬНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ АТМОСФЕРЫ

© 2011 г. Е. А. Пономарев¹, Н. В. Чернева², П. П. Фирстов³

¹ Институт солнечно—земной физики СО РАН, г. Иркутск ² Институт Космофизических исследований и распространения радиоволн ДВО РАН, п. Паратунка (Камчатская обл.) ³ Камчатский филиал Геофизической службы РАН, П-Камчатский е-mail: nina@ikir.ru Поступила в редакцию 24.06.2009 г. После доработки 25.10.2010 г.

В работе даны оценки изменения напряженности электростатического поля приземного слоя атмосферы (АЭП, $E_{Z(0)}$), обусловленные вариациями проводимости под воздействием радона, интенсивности космических лучей, изменения баланса легких и тяжелых ионов в моменты заката и восхода Солнца и в результате воздействия потенциала электрических токов ионосферы на потенциал АЭП. Показано, что проводимость атмосферы изменяется за счет ионизации под воздействием радоновых эманаций и определяется эксхаляцией радона и турбулентной диффузией приземного слоя, а интенсивность космических лучей влияет на проводимость приземного слоя через изменения условий рекомбинации ионов. Уменьшение проводимости атмосферы, обусловленное падением потока космических лучей (эффект Форбуша), снижает $E_{Z(0)}$, в то время как ослабление стока радона приводит к увеличению $E_{Z(0)}$. Дана оценка влияния условий освещенности на величину АЭП за счет изменения относительной концентрации тяжелых и легких ионов под воздействием процессов фотоотлипания и фотоприлипания. Работа сделана на основании данных, полученных на обс. "Паратунка", Камчатка.

1. ВВЕДЕНИЕ

Электростатическое поле атмосферы является чутким индикатором многих геофизических процессов. Наблюдения его вариаций уже используются для мониторинга загрязнений воздушной среды, для прогноза землетрясений и еще для многих других практических целей. Исследуется также влияние отдельных факторов, таких как воздействие стока радона из литосферы в атмосферу, землетрясений и т.д. [Бузевич и др., 1998; Руленко и др., 1996; Фирстов, 1999], эффект вариации интенсивности космических лучей [Мärcz, 1997; Шумилов и др., 2005; Чернева и Кузнецов, 2005; Анисимов и Шихова, 2005], влияние условий в околоземном космическом пространстве на неэквипотенциальность электроносферы [Park, 1976].

В работе рассматривается эмпирическая модель поведения локального атмосферного электрического поля в зависимости от различных природных факторов, полученная на основании многолетних временных рядов наблюдения за динамикой напряженности электростатического поля приземного слоя атмосферы (АЭП, $E_{Z(0)}$) на обс. Паратунка (Камчатка). Для интерпретации полученных закономерностей применяется другая модель, основанная на уравнениях физики.

Если рассматривать атмосферу, как горизонтально однородную среду с экспоненциально падаю-

щей плотностью нейтральной компоненты, а ионизованную составляющую — как малую примесь, то можно считать, что на некоторой высоте z_e нейтральная атмосфера быстро (на масштабе порядка высоты однородной атмосферы) переходит в достаточно хорошо проводящую среду.

Примем z_e за границу электроносферы, имеющую потенциал U, а потенциал земли за ноль. Тогда между электроносферой и землей возникнет ток, плотность которого *j*, будет постоянна по высоте:

$$j_Z = \sigma(z)E_Z(z) = -\sigma(z) \frac{dU(z)}{dz} = \sigma_0 E_{Z(0)}, \qquad (1)$$

где $E_{Z(0)}$ — напряженность вертикальной компоненты электрического поля, $\sigma(z)$ — проводимость воздуха $\sigma_0 = \sigma(0), U(z)$ — потенциал электрического поля.

Согласно (1) получаем

$$E_{Z(0)} = -\frac{U}{\int \frac{\sigma_0}{\sigma} dz},$$
(2)

где интегрирование ведется от уровня земли до уровня электроносферы z_e . Таким образом, напряженность электрического поля зависит от интегральной проводимости и значения потенциала электроносферы.

Рис. 1. Схема процессов формирования электрического поля атмосферы в присутствии факторов, влияющих на его величину в приземном слое. Буквами R_{22} и R_{21} отмечены области ионизации атмосферы радоном (R_{22}) и космическими лучами (R_{21}).

Напряженность АЭП распределена по высоте весьма неравномерно. При полной разности потенциала земля—ионосфера около 300 кВ, в "нижнем" 20-километровом слое E_Z падает примерно на 270 кВ, а на остальные 80 км приходится лишь 30 кВ, поэтому сопротивление "нижнего" слоя в значительной мере определяет вертикальный ток во всем столбе Земля—ионосфера [Kasemir, 1977].

Обозначим сопротивление верхней части столба, зависящее только от внешних факторов, через R_1 , а сопротивление нижней части – через $R_2 = R_{21} + R_{22}$, где: R_{21} – сопротивление слоя h_{21} , величина которого определяется ионизацией космическими лучами; R_{22} – сопротивление слоя переменной толщины h_{22} , в котором к космическим лучам добавляется ионизация эксхаляции радона (рис. 1). Толщина нижнего, "радонового", слоя зависит от интенсивности турбулентного перемешивания воздуха, а падение напряжения в нем можно записать:

$$U_{22} = \frac{UR_{22}}{(R_1 + R_{21} + R_{22})}.$$
 (3)

В статье уравнение (3) привлекается только для качественных оценок, а для расчетов $E_{Z(0)}$ будет использоваться уравнение (2). В работе проведен на качественном уровне комплексный анализ влияния наиболее существенных природных факторов на $E_{Z(0)}$ АЭП, к числу которых относятся:

- сток радона в атмосферу;

вариации потока космических лучей;

 изменение баланса легких и тяжелых ионов в момент заката и восхода солнца;

 воздействие потенциала электрических токов ионосферы на потенциал АЭП.

Взаимодействия указанных выше факторов в их влиянии на АЭП представлены на схеме (рис. 1).

Следует внести определенность в понятия – *региональное* и локальное АЭП. Считается, что высота "выравнивающего слоя" – изопотенциальной поверхности, вдоль которой выравнивание потенциала происходит за достаточно короткое время, – имеет высоту около 60 км. Следовательно, неоднородность АЭП на поверхности земли, вызванная неоднородностью распределения потенциала на "выравнивающем слое" тоже должна иметь близкий размер, который и следует считать региональным масштабом. Локальных масштабов может быть несколько, но их размеры не выходят за пределы регионального. Одним из масштабов будет высота верхней границы слоя перемешивания радона, ко-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 3 2011

торая колеблется от сотен метров зимой в безветренную ночь до 6-12 и даже 12 км в жаркий и ветреный летний день. Следует принять во внимание, что зимой поступление радона в атмосферу может быть блокировано промерзанием верхнего слоя почвы и снежным покровом. Некий универсальный для данной местности масштаб, по-видимому, определяется особенностями геолого-тектонической структуры региона [Фирстов и др., 2006]. Проводимость приземного слоя, в первую очередь, определяется концентрацией легких ионов, зависящей не только от ионизации радоном, но еще от целого ряда факторов, за счет которых формируются локальное АЭП, маскирующее унитарную вариацию [Лободин, 1980].

Отдельным вопросом является влияние аэрозолей на состояние АЭП приземного слоя, которое может проявляться за счет трех типов аэрозолей. Во-первых, частицы аэрозолей могут быть коллекторами для легких ионов и электронов, к которым последние могут прилипать (преимущественно ночью), а потом – отлипать (преимущественно днем), что может существенно влиять на проводимость приземного слоя [Краснопевцев, 1970]. Второй тип аэрозолей обладает естественной радиоактивностью, что часто наблюдалось в период интенсивного проведения ядерных испытаний. В настоящее время таким источником аэрозолей являются шлейфы электростанций, которые при определенных условиях (нарушение фильтров, аварийные выбросы) могут выбрасывать в воздух радиоактивные элементы. Наконец, аэрозоли третьего типа содержат частицы разной крупности, обладающие различными по знаку зарядами. В процессе гравитационного разделения зарядов в таких облаках образуются локальные электрические поля.

Особняком стоит прямое воздействие на показания электрометров дополнительной разности потенциалов земля—ионосфера, связанной с неэквипотенциальностью самой ионосферы, с ионосферными токами.

2. КРАТКАЯ ХАРАКТЕРИСТИКА ДАННЫХ НАБЛЮДЕНИЙ

На Камчатке, в обс. "Паратунка", начиная с 1996 г., проводятся регулярные наблюдения за электрическим полем в приземном слое атмосферы. С 1997 г. выполнялись наблюдения объемной активности радона (OA Rn) в подпочвенном воздухе [Фирстов и 1999; Фирстов и Рудаков, 2003; Фирстов и др., 2006]. Для измерения атмосферного электрического поля используется электростатический флюксметр "Поле-2м", в комплексе с анализатором ионного состава воздуха. Также на обсерватории работает метеостанция и магнитометрическая аппаратура. Регистрация OA Rn в подпочвенном воздухе проводилась на нескольких уровнях: в зоне аэрации на глубине один метр, и вблизи зоны полного влагонасыщения на глубине 2.5 метра. Регистрация осуществлялась с помощью радиометров "PEBAP" с дискретностью 2 цикл/ч. Для выделения эффекта влияния потенциала ионосферных токов использовались данные непрерывных наблюдений за метеорологическими величинами и магнитным полем, полученные на обс. "Паратунка". Для оценки влияния Форбуш-понижений на вариации АЭП привлекались данные об интенсивности космических лучей, полученные с помощью нейтронного монитора в Магадане [Чернева и Кузнецов, 2005].

3. ФАКТОРЫ, ВЛИЯЮЩИЕ НА РАСПРЕДЕЛЕНИЕ РАДОНА В ПРИЗЕМНОМ СЛОЕ, И ВЫСОТНЫЙ ПРОФИЛЬ СКОРОСТИ ИОНИЗАЦИИ АТМОСФЕРЫ КОСМИЧЕСКИМИ ЛУЧАМИ

Главным фактором, определяющим величину локального атмосферного электрического поля, является сопротивление приземного слоя атмосферы, которое зависит от ионизующего воздействия космических лучей и радона. Суточные вариации стока радона в атмосферу определяются изменениями атмосферного давления, а сезонные — различной проницаемостью грунтов в зависимости от сезонного хода температуры воздуха.

Объемная плотность мощности источника ионизации q_{0R} , связанного с условиями эксхаляции радона, дается уравнением [Баранов, 1955]:

$$q_{0R} = 2\xi J\tau/h_D, \tag{4}$$

где ξ — ионизационная эффективность радона, $\xi = 3 \times 10^5$ пар ионов на один распад [Физические величины, 1991]; q_{0R} — плотность мощности источника ионизации у земли; J — эксхаляция радона, или плотность потока радона с поверхности пород, в Бк см⁻² с⁻¹ (Бк-единица радиоактивности, равная одному распаду в секунду); τ — постоянная времени распада радона, равная 3.3×10^5 с; h_D — референтная высота слоя перемешивания. Референтные, т.е. опорные, значения J и h_D , при которых среднее значение $q_{0R} = 1.5$ пар ионов в см⁻³ с⁻¹, были приняты соответственно, 3.7×10^{-7} Бк см⁻² с⁻¹ и 500 метров.

Метеорологические факторы играют главную роль и в формировании годового хода атмосферного электростатического поля. Более высокие значения напряженности поля зимой связаны с тем, что сток радона в зимние месяцы падает за счет промерзания почвы и мощного снежного покрова на Камчатке, а также из-за значительного уменьшения интенсивности солнечного освещения (широта обс. Паратунка – 53°N), что приводит к увеличению доли тяжелых ионов из–за фотоприлипания.

Рис. 2. Средний высотный ход ионизации атмосферы космическими лучами (*a*); наблюдаемая зависимость падения $E_{Z(0)}$ в зависимости от падения интенсивности космических лучей во время Форбуш-понижений (δ).

Тяжелые ионы имеют малую подвижность, и проводимость приземного слоя атмосферы в зимний период падает, что приводит к увеличению $E_{Z(0)}$ АЭП.

Как зимой, так и особенно летом, динамические параметры атмосферы играют большую роль, поскольку от них зависит степень перемешивания радона в результате турбулентной диффузии, а, следовательно, и его концентрация в приземном слое. В летний период за счет солнечной радиации приземный слой воздуха интенсивно нагревается и получает положительную плавучесть. Решающим при определении устойчивости атмосферы является высотный градиент температуры ү и его отношение к адиабатическому градиенту $\gamma_a = g/c_p$, где g — ускорение силы тяжести, c_p — теплоемкость при постоянном давлении. Это постоянная величина, равная 10-ти градусам на км [Матвеев, 1984]. Очевидно, что если $\gamma > \gamma_a$, то атмосфера абсолютно неустойчива, при $\gamma_a = \gamma$ — атмосфера условно устойчива, а при $\gamma_a > \gamma$ – абсолютно устойчива.

Первая ситуация возможна только летом, третья — только зимой, а вторая — в любое время года. В случае возникновения такого распределения температур, которое соответствует неустойчивому состоянию, начинает развиваться конвективная неустойчивость (неустойчивость Релея—Тейлора), которая приводит к термической турбулизации атмосферы. Возникающая при этом турбулентная теплопроводность приводит к уменьшению температурного градиента, и атмосфера принимает условно устойчивое состояние. Распределение ионизующего фактора будет при этом описываться уравнением:

$$q_R = q_{0R} e^{-\frac{\zeta}{h}},\tag{5}$$

где: *h* — высота слоя перемешивания, *q*_{0*R*} — это вклад радона в ионизацию атмосферы на уровне земли.

Зависимость ионообразования космическими лучами q_C от высоты можно описать приближенным выражением, соответствующим графику, приведенному в работе [Герман и Голдберг, 1981]:

$$q_C = q_{C0} \frac{2 \exp(2Z)}{2 + \exp 3.2(Z - 1.4)},$$
(6)

где Z = z/H, H – высота однородной атмосферы.

Высотный профиль интенсивности ионообразования под действием космических лучей, вычисленный по формуле (6), показан на рис. 2*a*, который имеет максимум на высоте 13 км. Ионизация в максимуме достигает 30 см⁻³ с⁻¹, а интервал высот области максимальной ионизации составляет 16-10, т.е. около 7 км, что указывает на значительное влияние космических лучей на интегральную проводимость. Высокая стабильность интенсивности космических лучей, исключая Форбуш-понижения, обусловливает относительно небольшие вариации ЭПА. Во время Форбуш-эффектов ток в столбе Земляионосфера уменьшается из-за значительного увеличения сопротивления R_1 , обусловленного уменьшением ионизации атмосферы (рис. 1), что приводит к падению напряжения U22, согласно уравнению (3), и уменьшению E_Z у поверхности земли. В то же время сопротивление R_{22} не зависит от интенсивности космических лучей, т.е. практически не меняется.

По данным многолетних наблюдений на венгерской обс. "Nagycenk" [Märcz, 1997], а также наблюдениям в горных районах [Кречетов и Филиппов, 2000] показана корреляция между интенсивностью космических лучей и $E_{Z(0)}$. На рис. 26 показана зависимость $E_{Z(0)}$ на обсерватории "Паратунка" от интенсивности космических лучей, взятых по данным нейтронного монитора в Магадане, во время Форбуш-понижений для 18-ти случаев. Зависимость хорошо описывается линейным уравнением ($E_{Z(0)}$,%) = 9.64 (ГКЛ, %) – 0.72, из которой видно, что уменьшение ГКЛ на 3–10% приводит к существенному уменьшению $E_{Z(0)}$ ЭПА на 20–80% [Чернева и Кузнецов, 2005].

4. ОТКЛИК АТМОСФЕРНОГО ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА ИОНИЗАЦИОННЫЕ ПРОЦЕССЫ

Проводимость воздуха определяется концентрацией легких ионов, их зарядом и их подвижностью. Подвижность на уровне моря "среднего" легкого иона в воздухе равна $\mu = 1.5 \text{ см}^2/(\text{B c})$ [Смирнов, 1992]. Тяжелые ионы – пылинки или молекулярные кластеры с приставшими к ним молекулярными ионами или электронами, обладают малой подвижностью и в формировании электрического тока практически не участвуют. Рассмотрим стационарный случай. Из уравнений баланса числа легких и тяжелых ионов в воздухе [Матвеев, 1984] с учетом коэффициентов фотоприлипания $c = 5.2 \times 10^{-23}$ см³ с⁻¹ [Данилов, 1967; Смирнов, 1978] и фотоотлипания $\beta \sim 2 \times 10^{-4}$ с⁻¹ легких ионов от кластеров и пылинок, т.е. от тяжелых ионов [Альперт, 1972; Лабораторные исследования..., 1970], для стационарного состояния находим (для малых коэффициентов β):

$$N = C/(bn + \beta) \approx C/bn - C\beta/(bn)^{2};$$

$$n = \left[(C^{2} + qa)^{1/2} - C \right] / a + C\beta / \left[b (C^{2} + qa)^{1/2} \right],$$
(7)

где n — плотность легких, N — тяжелых ионов, $a = 6.5 \times 10^{-6}$ см³с⁻¹ — коэффициент рекомбинации легких ионов разных знаков, $b = 1.6 \times 10^{-6}$ см³с⁻¹ коэффициент рекомбинации легких и тяжелых ионов, $C = cN_L = 1.4 \times 10^{-3}$ с⁻¹ — коэффициент скорости реакции прилипания, N_L — постоянная Лошмидта, q — скорость ионизации $q = q_R + q_C$.

Проводимость выражается через подвижность соотношением: $\sigma(z) = en(z)\mu_0 \exp Z$. Выражение для проводимости далее удобно использовать в форме: $\sigma(Z) = \sigma_0 \frac{n(Z)}{2} \exp Z$ гле $\sigma_0 =$ проводимость на уров-

 $\sigma(Z) = \sigma_0 \frac{n(Z)}{n_0} \exp Z$, где σ_0 – проводимость на уровне земли, Z = z/H, H – высота однородной атмо-

сферы.

Учитывая в качестве переносчиков тока только легкие ионы [Пономарев и Седых, 2006], рассмотрим два случая: $C \ll qa$ — реализуется квадратичный закон рекомбинации, $C \gg qa$ — в этом случае закон рекомбинации линейный. Ниже приводятся выкладки только для квадратичного процесса рекомбинации, а вычисления — для обоих случаев.

Для оценки роли фотопроцессов в изменении величины *n* выделим член, содержащий *C* и β в отдельное слагаемое:

$$n = (q/a)^{1/2} + \frac{\beta C}{b(aa)^{1/2}}.$$
(8)

Для всех расчетов, кроме анализа восходного эффекта, используется только первый член уравнения (8).

Учитывая сказанное в отношении *a*, используя (5) и (6), найдем:

$$\sigma = \sigma_0 \left(q_R + q_C \right)^{1/2} e^{1.5Z}, \qquad (9)$$

где $\sigma_0 = e\mu_0/a_0^{1/2}$, e – заряд электрона, μ_0 – подвижность легких ионов и a_0 – коэффициент рекомбинации легких ионов на поверхности земли.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 3 2011

Рис. 3. Влияние изменения интенсивности ионизатора на $E_{Z(0)}$ от скорости ионизации космическими лучами (КЛ) q_c и радоном q_r при фиксированной скорости одного из параметров, равной 1.5 пар ионов в см⁻³ с⁻¹. Влияние изменений интенсивности ионизации радоном при постоянной ионизации КЛ в случае квадратичного закона рекомбинации (*a*). Влияние изменений интенсивности радона в случае квадратичного закона рекомбинации (*b*). Влияние изменений интенсивности радона в случае квадратичного закона рекомбинации (*b*). Влияние изменений интенсивности радона в случае квадратичного закона рекомбинации (*b*). Влияние изменения интенсивности радона при постоянной интенсивности радона в случае квадратичного закона рекомбинации (*b*). Влияние изменения интенсивности КЛ при постоянной интенсивности радона в случае линейного закона рекомбинации (*c*). Высота слоя перемешивания во всех случаях 720 м.

Подставив (9) в (2) с учетом уравнений (5) и (6) получим:

$$E_{Z(0)} = -U/H \int \left\{ \epsilon_R \exp(3 - \alpha Z) + 2\epsilon_C \exp\frac{5Z}{2 + \exp 3.2(Z - 1.4)} \right\}^{-1/2} dZ,$$
(10)

где $\varepsilon_R = q_{0R}/(q_{0R} + q_{0C}),$ $\varepsilon_C = q_{0C}/(q_{0R} + q_{0C}),$ $\alpha = H/h, h$ – высота слоя перемешивания, q_{0R} и q_{0C} – интенсивность ионообразования, отнесенная к уровню земли, от действия радона и космических лучей, соответственно. Как показали расчеты, влияние высоты слоя перемешивания не очень значительно, нами принята h = 720 м. Зависимость $E_{Z(0)}$ от q_R , при фиксированном значении $q_C = 1.5$ пар ионов в см⁻³ с⁻¹ показана на рис. З*a*, а зависимость $E_{Z(0)}$ от q_C при таком же значении q_R – на рис. 3*б*.

Выше зависимость процессов ионизации воздуха космическими лучами и рекомбинации ионов была представлена квадратичным уравнением баланса ионов, но в работах [Ермаков и Стожков, 2004; Stozhkov, 2003; Bazilevskaya et al., 1991] показано, что зависимость может быть представлена и линейным законом рекомбинации. Из квадратичного

Рис. 4. Выделение восходного эффекта в ЭПА методом наложения эпох с СКО (тонкие линии), использовано 203 случая для дней с хорошей погодой, большие ошибки связаны с использованием данных за разные сезоны (*a*). Выделение вариации ЭПА (*б*), связанной с вариацией геомагнитной возмущенности (сплошная линия – *H*-компонента магнитного поля Земли, пунктирная – E_z), за начало эпохи выбрано начало бухты в геомагнитных вариациях во временном диапазоне около полуночи, значения нормированы на максимум.

и линейного уравнений следует, что в случае квадратичного уравнения $n \sim (q)^{0.5}$, а в случае линейного $n \sim (q)$. Последняя зависимость указывает на то, что в действительности связь между концентрацией ионов в атмосфере и потоком космических лучей является более сильной, чем предполагалось ранее [Ермаков и Стожков, 2004].

Расчетные зависимости $E_{Z(0)}$ для квадратичного и для линейного законов рекомбинации приведены на рис. 3. Обращает на себя внимание то обстоятельство, что $E_{Z(0)}$ убывает при росте q_R и возрастает с ростом q_C , что подтверждается экспериментальными данными. Действительно в момент Форбушпонижения мы наблюдаем практически синхронное понижение E_Z АЭП. Экспериментальные данные, подтверждающие расчеты, приведены в работах [Чернева и Кузнецов, 2005].

Влияние восходно-заходных эффектов можно оценить, переписав значения для q_{0R} в виде $q_{0R}^* = q_{0R} - C(q_{0R}/a)$ для послевосходных часов и $q_{0R}^{**} = q_{0R} - C(q_{0R}/a) + \beta C/b(q_{0R}a)^{1/2}$ для послезакатных, а затем подставить эти выражения в выражение (10) вместо q_{0R} . Расчетная оценка изменений $E_{Z(0)}$ при этом составит около 5%, что подтверждается экспериментальными данными.

На рис. 4*a* показан усредненный ход напряженности АЭП поля в момент восхода на обс. "Паратунка", полученный методом наложения эпох по 37-ми дням хорошей погоды за весенне—летние месяцы 2004—2005 гг. Рассматривался 6 часовой интервал времени, на котором за начало эпохи принято время восхода: после восхода в течение двух часов наблюдается плавное увеличение $\overline{E}_{Z(0)}$ на 10%. Приведенные данные подтверждают влияние восходных эффектов на вариации $E_{Z(0)}$ АЭП.

5. ВЛИЯНИЕ ИОНОСФЕРНОЙ РАЗНОСТИ ПОТЕНЦИАЛОВ НА ЭЛЕКТРИЧЕСКОЕ ПОЛЕ АТМОСФЕРЫ

Ионосфера Земли находится под воздействием потенциального электрического поля, формирующегося в магнитосфере в результате сложных процессов трансформации кинетической энергии солнечного ветра в электромагнитную. В работе [Park, 1976] было теоретически рассмотрено воздействие ионосферного потенциала на АЭП и показано, что оно может быть существенным вблизи авроральной зоны и составлять до 10 В/м для $E_{Z(0)}$. Действительно, при измерениях АЭП на горе Цугшпитц был обнаружен отклик $E_{Z(0)}$ на солнечные вспышки с запаздыванием на 1-2 дня [Reiter, 1969], что было подтверждено более поздними наблюдениями АЭП на ст. "Восток", Антарктида [Frank-Kamenetsky et al., 1999]. Поскольку ионосфера – среда хорошо проводящая, градиенты ионосферного потенциала формируют интенсивный электрический ток, который течет в довольно узкой области высот (от 100 до 120 км, с максимумом около 107 км) называемой динамо-слоем.

На рис. 4б приведен пример выделения "ионосферной" вариации АЭП методом наложения эпох на обс. "Паратунка" для 39-ти случаев. За нулевую эпоху взято начало бухты. Отобраны случаи около местной полуночи. При средней величине электрического поля ~120–140 В/м это ~5% – величина, выходящая за статистические погрешности метода.

6. ЗАКЛЮЧЕНИЕ

Электрическое поле, формируемое в конденсаторе Земля-ионосфера мировой грозовой деятельностью и имеющее поэтому, как принято считать, унитарную вариацию, подвергается в каждом регионе действию местных факторов, которые следует учитывать при попытках выделить из данных наблюдений еще одно постороннее влияние, скажем аэрозольных загрязнений или сейсмического воздействия. В работе предложена приблизительная схема учета этих влияний и сделаны грубые оценки. Однако, очевидно, что существует перспектива создания фильтра, позволяющего очистить вариации $E_{Z(0)}$ АЭП от указанных выше факторов. Предложенная модель, из-за неопределенности коэффициентов в уравнениях баланса ионизации, да и в других соотношениях, не может в настоящее время обеспечить необходимую для практики точность воспроизведения вариаций АЭП приземного слоя. В настоящее время для практических целей лучше

пользоваться эмпирическими моделями, но рассмотренная модель позволяет анализировать взаимоотношение всех включенных в нее факторов, пусть пока и на качественном уровне.

Авторы благодарят Б.М. Шевцова за проявленный интерес к работе, обсуждение вопросов, затронутых в статье, полезные советы и замечания.

СПИСОК ЛИТЕРАТУРЫ

- Альперт Я.Л. Распространение радиоволн и ионосфера. М.: Наука, 1972.
- Анисимов С.В., Шихова Н.М. Отклик электрического поля приземного слоя на Форбуш-понижения интенсивности галактических космических лучей // Состав атмосферы и электрические процессы. Тез. IX Всесоюзной конференции молодых ученых, Борок. 17–19 мая. Ред. Анисимов С.В. С. 65. 2005.
- Баранов В.И. Радиометрия.. М.: Изд-во АН СССР, 1955.
- Бузевич А.В., Дружин Г.И., Фирстов П.П., Вершинин Е.Ф. и др. Гелиофизические эффекты, предваряющие Кроноцкое землетрясение 5 декабря 1997 г. М 7.7 / Сб. докладов "Кроноцкое землетрясение на Камчатке 5 декабря 1997 года: предвестники, особенности, последствия". Петропавловск-Камчатский: С. 177– 188. 1998.
- *Герман Д.Р., Голдбере З.А.* Солнце, погода, климат. Л.: Гидрометиздат. 220 с. 1981.
- Данилов А.Д. Химия ионосферы. Л. : Гидрометеоиздат. 292 с. 1967.
- Ермаков В.И., Стожков Ю.И. Физика грозовых облаков // Краткие сообщения по физике. Препринт ФИАН. № 2. С. 3–31. 2004.
- Краснопевцев Ю.В. Оценка влияния естественных радиоактивных продуктов на ионизационный баланс в свободной атмосфере // ФАО. Т. 6. № 10. С. 1069. 1970.
- Кречетов А.А., Филиппов А.Х. Электрическое поле атмосферы и интенсивность космических лучей / Сб. "Электрическое взаимодействие геосферных оболочек". Ред. Моргунов В.А., М.: ОИФЗ РАН, С. 30–32. 2000.
- Лабораторные исследования аэрономических реакций. Труды симпозиума по лабораторным исследованиям аэрономических реакций. Торонто. Канада. 3–4 сентября 1968 г. Пер. с англ. под ред. Данилова А.Д. // Л.: Гидрометеоиздат, 1970. С. 226.
- Лободин Т.В. О роли локальной компоненты в глобальных суточных вариациях электрического поля атмосферы // Тр. ГГО. Атмосферное электричество. Вып. 401. С. 108–114. 1980.
- Матвеев Л.Т. Курс общей метеорологии. Л.: Гидрометеоиздат. 752 с. 1984.
- Пономарев Е.А. Седых П.А. Как разрешить проблему суббурь? // Геомагнетизм и аэрономия. Т. 42. № 4. С. 1–16. 2006.
- Руленко О.П., Дружин Г.И., Вершинин Е.Ф. Измерения атмосферного электрического поля и естественного электромагнитного излучения перед Камчатским

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 51 № 3 2011

землетрясением 13.11.93 г. М = 7.0 // ДАН РАН. Т. 348. № 6. С. 814-816. 1996.

- Смирнов Б.М. Отрицательные ионы. М.: Атомиздат, 174 с. 1978.
- Смирнов В.В. Ионизация в тропосфере. СПб:, Гидрометеоиздат. 312 с. 1992.
- Физические величины. Справочник. Под. ред. Григорьева И.С., Мейлихова Е.З. Энергоатомиздат. М.: 1235 с. 1991.
- Фирстов П.П. Мониторинг объемной активности подпочвенного радона (222Rn) на Паратунской геотермальной системе в 1997—1998 г.г. с целью поиска предвестников сильных землетрясений Камчатки // Вулканология и сейсмология. № 6. С. 33—43. 1999.
- Фирстов П.П., Рудаков В.П. Результаты регистрации подпочвенного радона в 1997—2000 г.г. на Петропавловск-Камчатском геодинамическом полигоне // Вулканология и сейсмология. № 1. С. 26—41. 2003.
- Фирстов П.П., Чернева Н.В., Пономарев Е.А., Бузевич А.В. Подпочвенный радон и напряженность электрического поля атмосферы в районе Петропавловск-Камчатского геодинамического полигона // Вестник КРАУНЦ. Науки о Земле. Петропавловск-Камчатский. № 1(7). С. 102–109. 2006.
- Чернева Н.В., Кузнецов В.В. Форбуш-понижения и эффекты терминатора в атмосферном электричестве Камчатки / Тр. VIII конференции молодых ученых "Астрофизика и физика околоземного космического пространства". Ред. Жеребцов Г.А., Куркин В.И., Потехин А.П. Иркутск : 242 с. 2005.
- Шумилов О.И., Касаткина Е.А., Куличков С.Н., Каллистратова М.А., Васильев А.Н. Метеорологические эффекты в атмосферном электрическом поле высоких широт // Изв. РАН. Физика атмосферы и океана. Т. 41. № 5. С. 613–621. 2005.
- Bazilevskaya G.A., Krainev M.B., Stozhkov Yu.I., Svirzhevskaya A.K., Svirzhevsky N.S. Long-term Soviet program for the measurement of ionizing radiation in the atmosphere // J. Geomagn. Geoelectr. V. 43. Suppl. P. 893–900. 1991.
- Frank-Kamenetsky A.V., Burns G.B., Troshichev O.V. et al. The geoelectric field at Vostok, Antarctica: its relation to the interplanetary magnetic field and the cross polar cap potential difference // J. Atmos. Solar–Terrestrial Phys. V. 61. P. 1347–1356. 1999.
- Kasemir H.W. Theoretical problems of the global atmospheric electric circuit. In Electrical Processes in Atmospheres, eds. H. Dolezalic, R. Reiter. Darmstadt Steinkopff. P. 423–438. 1977.
- Märcz F. Short-term changes in atmospheric electricity associated with Forbuch decreases // J. Atmos. Solar-Terrestrial Phys. V. 59. № 9. P. 975–982. 1997.
- Park C.G. Downward Mapping of High–Latitude Ionospheric Electric Fields to the Ground // J. Geophys. Res. 81. № 1. P. 168–174. 1976.
- *Reiter R.* Solar flares and their impact on potential gradient and air–earth current characteristics at high mountain stations. Pure Appl. Geophys. V. 72. P. 259–267. 1969.
- Stozhkov Y.I. The role of cosmic ray in the atmospheric processes // J. Physics G: Nuclear and Particle Physics. V. 29.
 № 5. P. 913–923. 2003.