УДК: 551.594.6; 551.594.11

ЭФФЕКТЫ ГРОЗОВОЙ АКТИВНОСТИ В СПЕКТРАХ МОЩНОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ В ПРИЗЕМНОЙ АТМОСФЕРЕ НА КАМЧАТКЕ

© 2010 г. Г. А. Михайлова¹, Ю. М. Михайлов¹, О. В. Капустина¹, С. Э. Смирнов²

¹Учреждение РАН Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова,

г. Троицк (Московская обл.) e-mail: yumikh@izmiran.ru ² Институт космофизических исследований и распространения радиоволн ДВО РАН, c. Паратунка (Камчатский край), e-mail: sergey@ikir.kamchatka.ru Поступила в редакцию 19.03.2010 г.

Выполнен спектральный анализ вариаций E_z -компоненты квазистатического электрического поля в приземной атмосфере в широкой полосе внутренних гравитационных волн (5 мин – 3 ч) в спокойных и сейсмически активных условиях, а также при высокой грозовой активности. Использованы данные наблюдений поля в периоды сентябрь 1999 г., август – сентябрь 2002 г. Показано, что в отсутствие гроз и землетрясений в фоновом спектре присутствуют колебания с максимумами на периодах $T \sim 1.8$ и 1 ч, 40, 30, 15, 10–13 мин. Их интенсивность в полосе периодов 0.5–3 ч на два и более порядков по величине превышает интенсивность максимумов в полосе 5–30 мин. Накануне землетрясений при наличии аномалий в суточных вариациях напряженности электрического поля наблюдается тенденция усиления фонового спектра на выделенных в нем максимумах. В обеих полосах периодов колебаний интенсивность спектров возрастает на один–полтора порядка по величине. При высокой грозовой активности наблюдается большая изменчивость по сравнению со спектрами предвестников землетрясений как по положению максимумов, так и по их интенсивности. Интенсивность максимумов в полосе периодов 5–30 мин превышает максимумов, так и по их интенсивности. Интенсивность максимумов в полосе периодов 5–30 мин превышает максимумов, так и по их интенсивности.

1. ВВЕДЕНИЕ

Эффекты грозовой активности в характеристиках различных геофизических параметров экспериментально были обнаружены сравнительно давно (см. ссылки в работе [Pierce and Coroniti, 1966]). Для их интерпретации авторами этой работы впервые был предложен механизм, согласно которому колебания воздуха на вершине грозового облака способны генерировать атмосферные волны в полосе внутренних гравитационных волн (ВГВ). Эти волны могут распространяться как вверх, так и вниз. В настоящее время накоплен достаточно большой объем результатов их регистраций в вариациях атмосферного давления, ветров, напряженности квазистатического электрического поля в приземной атмосфере, колебаний электронной концентрации на различных высотах ионосферы и т.д. Ограничимся некоторыми из этих результатов. Так, например, использование радаров на сверхвысоких частотах позволило исследовать высотные профили ветра непосредственно вблизи грозовых источников [Larsen, 1982]. Более многочисленные наземные эксперименты по измерению атмосферного давления микробарографами с различными полосами пропускания по частоте показали следующее распределение энергии колебаний в спектрах давления: в полосе периодов 0.5-15 мин выделены колебания с максимальной интенсивностью на периодах T = 3.3-5.3; 5.5-10.7 мин [Balachandran, 1980]. В более широкой полосе периодов (20-180 мин) выделены устойчивые максимумы с $T \sim 20-40$ мин и реже с $T \sim 2$ ч [Грачев и др., 1988]. При прохождении грозового облака над пунктом регистрации обнаружена динамика волновой активности в полосе периодов 5 мин – 3 ч: по мере приближения его в спектре давления возрастают колебания с Т ~ 10-20 мин и по мере его удаления максимум в спектре смещается на $T \sim$ ~ 60-120 мин. [Данилов и Свертилов, 1991]. Измерены также вариации атмосферного давления и напряженности квазистатического электрического поля в приземной атмосфере в инфразвуковом диапазоне атмосферных волн на частоте Брента-Вяйсяля (Т~5 мин) [Рыбнов и Соловьев, 2007].

Вариации атмосферного давления в приземной атмосфере, как известно [Попов, 2008], вызывают вариации плотности объемного заряда, определяющие вариации напряженности квазистатического электрического поля. Естественно, в спектрах мощности напряженности электриче-

Рис. 1. Слева примеры суточных вариаций напряженности *Ez*-компоненты поля в условиях хорошей погоды (03.09), накануне землетрясения (17.09) и во время грозы (14.09). Справа зависимость спектральной плотности мощности этих вариаций в полосе периодов 5 мин – 3 ч.

ского поля должны были бы наблюдаться колебания, периоды которых близко совпадали бы с периодами атмосферных волн: тепловые приливные с *T*~4, 8, 16, 24 ч, ВГВ в полосе периодов 0.5-3 ч и волны планетарного масштаба (Т>24 ч). Эти колебания действительно были выделены в спектрах мощности квазистатического электрического поля, измеренного на Камчатке в обс. "Паратунка" [Михайлов и др., 2003; Михайлова и др., 2009]. Более того, было обнаружено усиление ВГВ перед сильными землетрясениями (3T), подтверждая тем самым известный факт, что землетрясения также являются их источником. На фоне временных вариаций напряженности квазистатического электрического поля как в условиях хорошей погоды, так и при сейсмической активности отчетливо проявляются и имеют характерный вид эффекты грозовой активности.

Представляло интерес оценить относительный вклад грозовых источников в спектры мощности квазистатического электрического поля в широкой полосе периодов от 5 мин до 3 ч. Нижняя граница спектрального диапазона выбрана с учетом того, что она близко совпадает с частотой Брента-Вяйсяля, а верхняя граница примыкает к гармонике суточного теплового прилива. Для этой цели был выполнен спектральный анализ записей *Ez*-компоненты электрического поля в периоды: сентябрь 1999 г., август - октябрь 2002 г., полученных в обс. "Паратунка" ИКИР ДВО РАН (ф = = 52.97°N; λ = 158.25°E). Сравнение этих результатов с эффектами землетрясений на фоне условий хорошей погоды и составляет содержание данной работы.

Рис. 2. Суточные вариации напряженности *Ez*-компоненты квазистатического электрического поля, атмосферного давления, осадков (штриховая линия на верхнем рисунке), *Dst*-вариаций и *Кр*-индекса в сентябре 1999 г.

Рис. 3. Средний фоновый спектр мощности поля с СКВ отклонениями в полосах периодов 0.5–3 ч и 5–30 мин и спектральная кривая накануне землетрясений 17 сентября (верхний фрагмент рисунка). Внизу средний спектр мощности поля с СКВ отклонениями во время гроз.

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 50 № 6 2010

МИХАЙЛОВА и др.

Номер	Дата	Время, UT	Географические координаты		Дки	Mn	r 17M
			φ°, N	λ°, Ε	<i>D</i> , км	мр	<i>г</i> , км
1	06.09.1999	15:04:52.81	52.10	159.15	55	5.0	180
2	09.09.1999	14:02:01.59	47.51	154.33	33	5.6	525
3	18.09.1999	21:28:33.17	51.21	157.56	60	6.0	225
4	09.08.2002	23:31:47.90	53.57	161.55	33	4.6	270
5	10.08.2002	03:14:44.65	53.60	161.70	33	4.4	270
6	10.08.2002	09:50:57.94	53.43	161.76	33	4.5	270
7	10.08.2002	21:41:53.72	53.63	161.50	33	4.3	270
8	10.08.2002	22:12:08.95	53.49	161.72	33	4.4	270
9	27.08.2002	04:05:22.13	52.64	160.05	68	4.2	180
10	24.09.2002	09:00:45.26	49.21	155.36	48	5.4	390
11	03.10.2002	00:33:09.95	48.77	155.18	33	4.3	420
12	03.10.2002	15:56:41.13	54.56	161.51	53	5.2	315
13	08.10.2002	09:18:57.95	52.76	160.06	79	5.0	180
14	09.10.2002	13:49:55.60	51.25	157.36	84	4.1	270
15	13.10.2002	00:55:20.18	55.58	162.39	41	4.6	390
16	15.10.2002	05:15:47.30	54.54	161.28	33	4.6	285
17	16.10.2002	10:12:21.43	51.95	157.32	102	6.2	150
18	17.10.2002	02:29:43.15	51.99	157.23	118	4.7	150
19	18.10.2002	10:19:49.97	51.93	159.11	60	4.6	150
20	20.10.2002	01:34:49.10	52.93	160.25	46	5.3	150
21	23.10.2002	06:31:00.38	52.24	158.59	67	4.6	150
22	29.10.2002	13:11:15.72	52.90	158.82	100	4.5	150
23	29.10.2002	15:04:56.80	53.14	160.09	61	4.8	155
24	31.10.2002	21:35:32.24	51.84	158.80	55	4.1	195

Землетрясения вблизи п-ова Камчатка, зарегистрированные в сентябре 1999 г. и августе-октябре 2002 г.

Примечание: D – глубина эпицентра; *r* – расстояние от эпицентра до обс. "Паратунка".

2. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

В качестве примера на рис. 1 слева приведены характерные суточные вариации напряженности Ez-компоненты электрического поля, измеренного с дискретностью по времени 1 мин для условий хорошей погоды (03.09), с наличием аномалии накануне землетрясения с магнитудой $M \sim 6$ (17.09) и в день с грозой (14.09). Видно, что в условиях хорошей поголы в течение суток. за исключением возрастания в интервале времени 20-22 UT, связанного с местным восходом Солнца [Kasemir, 1956], вариации напряженности поля имеют место вблизи уровня 100 В/м со слабым понижением после местного полудня, вызванного солнечной радиацией. Ночью наблюдается почти плоский спокойный уровень напряженности поля. 17 сентября накануне землетрясения происходит продолжительное бухтообразное понижение напряженности поля до - 500 В/м с наложенными колебаниями. Этот эффект приписывается увеличению плотности объемного заряда в приземной атмосфере за счет выхода подпочвенного радона в результате интенсивного процесса образования трещин в коре Земли. Наблюдаемое увеличение напряженности электрического поля перед аномалией, по-видимому, может быть связано с ростом температуры воздуха и с конвекцией объемных зарядов, приводящей к понижению проводимости приземной атмосферы. Во время грозы 14 сентября в течение короткого интервала времени наблюдаются резкие знакопеременные колебания напряженности поля, достигающие величины ±2000 В/м. Справа на рисунке приведены кривые спектральной плотности мощности в логарифмическом масштабе (далее для краткости, спектры мощности) в полосе периодов 5 мин – 3 ч. Из рисунка следует, что интенсивность спектра изменяется в очень широких пределах (от 3×10^4 до $6 \times$ $\times 10^{6}$ для фона и от 3×10^{5} до 4×10^{7} при грозовой активности). Поэтому в дальнейшем они будут рассмотрены отдельно в полосах периодов 5-30 мин и 0.5-3 ч и в линейном масштабе. Для оценки спек-

Рис. 4. То же, что и на рис. 2, но для августа 2002 г.

тральной плотности мощности использован метод модифицированных периодограмм [Welch,1967]. Для выделения максимального периода $T \sim 3$ ч длительность отдельного сегмента выбрана равной 8 ч с перекрытием в 4 ч, так что общее количество индивидуальных спектров равно 5. На всех последующих рисунках в статье приводится средняя их величина спектральной плотности мощности *S* (B²/м²Гц) на интервале времени 24 ч.

Рассмотрим отдельно результаты анализа записей в различные периоды наблюдений.

Сентябрь 1999 г.

Общая картина суточных вариаций уровня осадков, атмосферного давления и параметров *Dst, Kp, Ez* показана на рис. 2. Для определения среднего спектрального фона выбраны дни при слабой геомагнитной активности, в отсутствии осадков, гроз и землетрясений. Таких дней в этом месяце оказалось тринадцать, пять дней (10, 13– 15, 19) с грозами и три дня с аномалиями перед землетрясениями (5, 8, 17). Средний фоновый спектр мощности показан на рис. 3 вместе с СКВ отклонениями (вертикальные отрезки прямых), на котором приведен также спектр мощности аномальной вариации электрического поля

17 сентября. В этом месяце 6 и 9 сентября произошли ЗТ с магнитудой менее 6 (см. таблицу). Спектры их предвестников оказались внутри границ СКВ отклонений фонового спектра и на рисунке не приводятся. Ниже на рисунке показаны средние спектры с СКВ отклонениями для дней с грозами вместе с кривой *S* для 17 сентября. Анализ всей совокупности кривых показывает следующее: в полосе периодов 0.5-3 ч характер спектров во время гроз и в предвестниках ЗТ совпадает между собой. На кривых выделены максимумы интенсивности на периодах порядка 2, 1 и 0.7 ч с последовательно уменьшающейся интенсивностью. Но при этом интенсивность спектра во время грозы на порядок по величине превышает спектр 17 сентября. Оба спектра на 2-3 порядка по величине превышают фоновый уровень. В полосе периодов 5-30 мин оба спектра имеют серию максимумов на периодах 10-15 и 20-25 мин, но различающихся между собой на порядок по величине интенсивности.

Август 2002 г.

Общая картина суточных вариаций атмосферного давления, *Dst-* и *Кр*-индексов, а также напряженности *Ez*-компоненты электрического поля приве-

Рис. 5. Средний фоновый спектр мощности поля и средний спектр мощности поля предвестников землетрясений с их СКВ отклонениями (верхний фрагмент рисунка). Внизу спектры мощности поля индивидуальных гроз: редкая штриховая кривая с правой осью ординат — 19 августа; жирная линия (20 августа) и плотная штриховая линия (31 августа) с левой осью ординат.

дена на рис. 4. Из рисунка следует, что грозы имели место 3, 19, 20, 31 августа, а аномалии поля перед 3T - 8, 9, 25 - 26 августа. В качестве фона были выбраны 10 дней без аномалий в поведении напряженности электрического поля. Средний спектр мощности в эти дни вместе с СКВ отклонениями в двух диапазонах периодов показан на верхних фрагментах рис. 5. Как на верхних, так и на нижних фрагментах рисунка для сравнения приведен средний спектр мощности с СКВ отклонениями для предвестников 3T, который более, чем на порядок по величине превышает уровень фона. В спектре мощности предвестников ЗТ наблюдались максимумы убывающей интенсивности на периодах 1.9; 1 ч; 44, 37, 30 мин с резким скачком интенсивности на периодах 11-28 мин. Спектры мощности грозовых аномалий электрического поля сильно различаются между собой по положению максимумов и их интенсивности, поэтому ниже на рисунке приведены индивидуальные кривые для трех дней. Спектр мощности 19 августа показан редкой штриховой кривой с правой осью ординат. Левая ось ординат на рисунке относится к жирной линии (20 августа) и плотной штриховой линии (31 августа). Видно, что максимумы в их спектрах мощности приходятся на периоды $T \sim 1$ и 2.8 ч; 35 и 54 мин с интенсивностью порядка интенсивности предвестников 3Т. Их вклад в спектр мощности в полосе 5–30 мин существенно ниже предвестников и на рисунке не приводится. Гроза 19 августа была на два порядка по интенсивности выше других кривых с ярко выраженным максимумом в спектре на периоде $T \sim 1$ ч. В полосе периодов 5–30 мин преобладают максимумы на периодах $T \sim 8-10$ и 15–25 мин.

Сентябрь 2002 г.

Общая картина суточных кривых атмосферного давления, *Dst-* и *Кр*-индексов, а также *Ez*-компоненты поля приведена на рис. 6. В этом месяце было 8 дней с грозовой активностью и одна слабая аномалия электрического поля 23 сентября накануне 3T (см. таблицу). Индивидуальный спектр за этот день, наложенный на средний фоновый спектр, лежит в пределах его СКВ отклонений (рис. 7). В фоновом спектре мощности выделяются максимумы убывающей интенсивности с пе-

Рис. 6. То же, что и на рис. 2, но для сентября 2002 г.

риодами T ~ 1.85 и 1.15 ч, а также 30 и 40 мин. В спектре мощности предвестника также присутствуют максимумы убывающей интенсивности на *T* ~ 1.7, 1.1 ч и 50.5 мин, т.е. близко совпадающие с фоновым спектром мощности. В полосе периодов 5-30 мин в фоновом спектре выделены максимумы на $T \sim 13, 15, 30$ мин. На нижних кривых рисунка приведены средние спектры мощности при грозах для знакопеременных вариаций Ez-компоненты поля (a) и однополярных понижений напряженности поля (б). Кривая (б) на порядок по величине ниже кривой (а), но оба эти спектра почти на два порядка превышают фоновый уровень в полосе периодов 0.5-3 ч и почти на три порядка (кривая а) в полосе периодов 5–30 мин. В спектре знакопеременных вариаций поля наблюдаются максимумы убывающей интенсивности на *T* ~ 2.1 ч и 37-47 мин. На кривой (б) – максимумы на T ~ 2 ч, 56 и 35мин. Для знакопеременных вариаций поля в полосе периодов 5-30 мин наблюдается целая серия максимумов с $T \sim 6.5$, 7.25, 8.3, 9.3, 12-15 и 20 мин. Вклад однополярных разрядов в этот диапазон периодов значительно ниже (на два порядка по величине интенсивности).

Октябрь 2002 г.

На рис. 8 приведен обзорный график метеорологических и геомагнитных параметров вместе с вариациями напряженности Ez-компоненты поля. Как видно в таблице, в этом месяце произошло единственное землетрясение с магнитудой M = 6.2 (16 октября). Более слабым землетрясениям 3 и 8 октября предшествовали сильные знакопеременные вариации напряженности поля, сопровождаемые обильными осадками. В этом месяце наблюдались также и сильные отрицательные бухтообразные понижения напряженности до значительной величины – минус 1500 В/м и более. Эти вариации по времени совпалали с обильными осадками (рис. 8) и с молниевой активностью [Михайлов и др., 2006б]. В период с 3 по 20 октября было выделено 8 дней хорошей погоды в качестве фона. Их средняя кривая спектра мощности вместе с СКВ отклонениями нанесена на рис. 9 вместе с графиком S предвестника 3T 16 октября. В спектре этой кривой выделены максимумы убывающей интенсивности с частотой на периодах $T \sim 2$ ч, 56 и 33 мин в полосе 0.5–3 ч и на *T*~14, 20, и 26 мин в полосе 5–30 мин. Интенсивность последних более чем на порядок по величине ниже интенсивности максимумов в полосе

Рис. 7. Средний фоновый спектр мощности поля с СКВ отклонениями и спектр мощности поля предвестника землетрясения (верхний фрагмент рисунка). Внизу средние спектры мощности при грозах знакопеременных вариаций *Ez*-компоненты поля (*a*) и однополярных понижений напряженности поля (*б*).

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 50 № 6 2010

850

Рис. 9. Средний фоновый спектр мощности поля с СКВ отклонениями и спектр мощности поля предвестника землетрясения (верхний фрагмент рисунка). Внизу спектры мощности поля индивидуальных гроз: кривые *1*; *2*; *3*; *4* соответствуют 7; 4; 18 и 3 октября.

0.5-3 ч. В фоновом спектре в полосе 5-30 мин выделены максимумы на $T \sim 28$ и 15-20 мин с интенсивностью чуть ниже спектра предвестника ЗТ, в котором также присутствуют максимумы на *T* ~ 14, 20, 26 мин. Ситуация с характеристиками спектров мощности в дни с грозами (3, 4, 7, 18 октября) более сложная. Индивидуальные спектры сильно различаются между собой как по положению максимумов, так и по их интенсивности. Поэтому внизу на рисунке они приведены отдельно для каждого дня: кривая 1 соответствует 7 октября, кривая 2 – 4 октября, кривая 3 – 18 октября и кривая 4 – 3 октября. За исключением кривой 1 максимумы кривых 2 и 3 приходятся на периоды $T \sim 2.8, 1.8$ и 1 ч и интенсивности их близки между собой и одного порядка с кривой 14 октября. В полосе периодов 5-30 мин на кривой 2 выделены максимумы на $T \sim 24, 17, 10-14$ мин, а на кривой 4 - на $T \sim 30, 25, 18$ мин с интенсивностью порядка по величине и чуть ниже спектра 14 октября.

3. ВЫВОДЫ

Вся совокупность представленных в работе результатов за четыре месяца регистрации напряжен-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 50 № 6 2010

ности *Ez*-компоненты квазистатического электрического поля в приземной атмосфере Камчатки показала следующее:

1. В условиях хорошей погоды (в отсутствие гроз и землетрясений) в фоновом спектре вариаций напряженности поля в полосе периодов 5 мин – 3 ч присутствует широкий спектр колебаний с максимумами на периодах $T \sim 1.8$ и 1 ч, а также 40, 30, 15, 10–13 мин. При этом интенсивность спектральной плотности мощности в полосе периодов 0.5–3 ч на два и более порядков по величине превышает интенсивность максимумов в полосе периодов 5–30 мин. Поведение фонового спектра в полосе периодов 0.5–3 ч близко совпадает с результатами работы [Михайлов и др., 2003], а в полосе периодов 5–30 мин – со спектрами микропульсаций атмосферного давления [Голицын, 1964].

2. Накануне землетрясений при наличии аномалий в суточных вариациях *Ez*-компоненты поля наблюдается тенденция усиления фонового спектра на выделенных в нем максимумах. При этом в обеих полосах периодов интенсивность максимумов для землетрясений с магнитудой более шести возрастает по величине на один-полтора порядка. При меньших значениях магнитуд спектры мощности электрического поля лежат в пределах СКВ отклонений фоновых спектров.

3. Характер изменения спектральной плотности мощности электрического поля в дни с грозами проявляет большую изменчивость по сравнению со спектрами предвестников землетрясений как по положению максимумов, так и по их интенсивности. В некоторых случаях они повторяют поведение спектров накануне землетрясений, но интенсивность максимумов в полосе периодов 0.5-3 ч на один-полтора порядка по величине превышает соответствующие максимумы накануне ЗТ, и на два порядки и более – в полосе периодов 5-30 мин. Спектральное распределение мощности электрического поля в этой полосе близко совпадает с результатами прямых измерений спектров давления, указанными в работах во ВВЕДЕНИИ. Усиление интенсивности внутренних гравитационных волн в полосе периодов 0.5-3 ч ранее было обнаружено в суточных вариациях атмосферных радиошумов на частоте 4.65 кГц во время тропических циклонов [Михайлов и др., 2006а]. Наблюдаемый большой разброс спектральных кривых при грозах не позволил получить среднестатистические их характеристики. По-видимому, это может быть связано с развитием индивидуальных конвективных ячеек внутри грозовых облаков. Этот процесс был детально исследован в работе [Krehbill, 1986].

В заключение авторы признательны Г.Н. Копыловой за любезно предоставленные метеорологические данные.

СПИСОК ЛИТЕРАТУРЫ

- Голицын Г.С. О временном спектре микропульсаций атмосферного давления // Изв. АН СССР. Сер. геофиз. № 8. С. 1253–1258. 1964.
- Грачев А.И., Куличков С.Н., Матвеев А.К. Квазипериодические флуктуации атмосферного давления с периодами 20–180 мин // Изв. АН СССР. Физика атмосферы и океана. Т. 24. № 2. С. 152–158. 1988.
- Данилов С.Д., Свертилов А.И. ВГВ, генерируемые при прохождении гроз // Изв. АН СССР. Физика атмосферы и океана. Т. 27. № 3. С. 234–242. 1991.
- Михайлов Ю.М., Михайлова Г.А., Капустина О.В., Бузевич А.В., Смирнов С.Э. Вариации спектров

мощности электрического поля приземной атмосферы на Камчатке // Геомагнетизм и аэрономия. Т. 43. № 3. С. 750–758. 2003.

- Михайлов Ю.М., Дружин Г.И., Михайлова Г.А., Капустина О.В. Динамика грозовой активности во время тропических циклонов // Геомагнетизм и аэрономия. Т. 46. № 6. С. 825–838. 2006а.
- Михайлов Ю.М., Михайлова Г.А., Капустина О.В., Дружин Г.И., Смирнов С.Э. Электрические и электромагнитные процессы в приземной атмосфере перед землетрясениями на Камчатке // Геомагнетизм и аэрономия. Т. 46. № 6. С. 839–852. 2006б.
- Михайлова Г.А., Михайлов Ю.М., Капустина О.В., Дружин Г.И., Смирнов С.Э. Спектры мощности тепловых приливных и планетарных волн в приземной атмосфере и в *D*-области ионосферы на Камчатке // Геомагнетизм и аэрономия. Т. 49. № 5. С. 639–653. 2009.
- Попов И.Б. Статистические оценки влияния различных метеорологических явлений на градиент электрического потенциала атмосферы // Труд. ГГО. Вып. 558. С. 152–161. 2008.
- Рыбнов Ю.С., Соловьев С.П. Исследование возмущений электрического и акустико-гравитационного полей при прохождении атмосферного фронта // Российская конференция по атмосферному электричеству. 01–07 октября 2007 г. Нижний Новгород. ИПФАН. Сб. труд. / Отв. ред. Е.А. Мареев. С. 233–234.
- Balachandran N.K. Gravity waves from thunderstorms
 // Mon. Wea. Rev. V. 108. № 6. P. 804–1160. 1980.
- Kasemir H.W. Zur stromungstheorie des luftelektrischen feldes III: der austaus – chgenerator // Arch. meteor., geophys and bioclimatology. Ser. A. V. 9. № 3. P. 357–370. 1956.
- Krehbill P.R. The electrical structure of thunderstorms // The Earth's electrical environment. National Academy Press. Washington. D.C. P. 90–113. 1986.
- Larsen M.F. Gravity wave generation by thunderstorm observed with a vertically – pointing 430 MHz radar // Geophys. Res. Lett. V. 9. № 5. P. 571–574. 1982.
- Pierce A.D., Coroniti S.C. A mechanism for the generation of acoustic-gravity waves during thunderstorm formation // Nature. № 5042. P. 1209–1210. 1966.