УДК 550.385.27

ЭФФЕКТЫ ГЕОМАГНИТНЫХ ВОЗМУЩЕНИЙ В СПЕКТРАХ МОЩНОСТИ АТМОСФЕРНЫХ ВОЛН В ДИНАМО-ОБЛАСТИ ИОНОСФЕРЫ

© 2009 г. Г. А. Михайлова¹, Ю. М. Михайлов¹, О. В. Капустина¹, С. Э. Смирнов²

¹Институт земного магнетизма, ионосферы и распространения радиоволн им. Н.В. Пушкова РАН,

г. Троицк (Московская обл.) ²Институт космофизических исследований и распространения радиоволн ДВО РАН, п. Паратунка (Камчатский край) e-mail: yumikh@izmiran.ru e-mail: sergey@ikir.kamchatka.ru Поступила в редакцию 08.04.2008 г.

Используя вариации горизонтальной компоненты геомагнитного поля, наблюдаемого в обсерваториях "Паратунка" и Ваггоw в сентябре—октябре 1999 г., исследована динамика волновых возмущений в *E*-области ионосферы в полосе периодов тепловых приливных волн и волн планетарных масштабов (T = 48, 72, 192 ч). Получено, что на средних широтах в период высокой геомагнитной активности интенсивность колебаний в спектрах мощности с T = 24 и 12 ч изменяется с периодичностью 16 сут, не совпадающей с периодичностью изменения ΣKp -индекса. Максимальные отклонения значений этих периодов от значений в спокойных условиях совпадают с максимальные изменения в полосе периодов (48–192) ч, особенно с $T \sim 192$ ч. Интенсивность изменения интенсивность с тармоники с $T \sim 24$ ч. Периодичность изменения интенсивность интенсивность с с с периодов (48–192) ч совпадает с периодичностью изменения ΣKp -индекса. В полярной ионосфере эффект высокой геомагнитной активности проявляется в усилении колебаний с квазипериодом $T \sim 24$ ч и появлением колебаний в полосе (48–192) ч с периодичностью, совпадающей с квазипериодом $T \sim 24$ ч и появлением колебаний в полосе (48–192) ч с периодичностью, совпадающей с максимумами изменения ΣKp -индекса.

PACS: 94.30.Lr, 94.20.dg, 92.60.hh

1. ВВЕДЕНИЕ

Исследованию волновых возмущений на различных высотах ионосферы посвящено большое количество работ [Митра, 1977; Данилов и др., 1987 и цитируемая там литература], в которых использовались различные радиофизические методы. В частности, для анализа волновых процессов в Е-области традиционно использовались вариации горизонтальной компоненты геомагнитного поля, наблюдаемого у поверхности Земли. Известно, что на высотах $h \sim 90-120$ км существуют интенсивные квазистационарные токовые системы, возбуждаемые электрическими полями, связанными с нейтральными ветрами на этих высотах благодаря динамо-эффекту (это Sq-вариации). В спектрах мощности ветровых движений на этих высотах были выделены характерные три отдельные полосы периодов колебаний, соответствующие разного рода атмосферным волнам. Периоды T > 24 ч относятся к волнам планетарных масштабов, T = (4-24) ч - к тепловым приливным волнам и *T* < 4 ч – внутренним гравитационным волнам [Vincent, 1965]. Основная цель этих исследований сводилась к изучению структуры волн: оценка амплитуд гармоник, их горизонтальных и вертикальных длин волн, направлений распространения и т.д. Вопрос о влиянии геомагнитных возмущений на эти параметры не рассматривался. В работе [Lastovicka, 1996] анализ эффектов геомагнитных возмущений ограничен рассмотрением волновых процессов в нижней ионосфере (h = 60 - 90 км). Используя данные о спектрах мощности суточных вариаций горизонтальной компоненты геомагнитного поля на Камчатке, авторы работы [Михайлов и др., 2008] выделили полный набор колебаний тепловых приливных волн с периодами T = 24, 12, 8, 4 ч и внутренних гравитационных волн с периодами *T* < 4 ч. Было обнаружено, что при высокой геомагнитной активности максимумы в спектрах первого суточного прилива (T = 24 ч) и его гармоник смещаются относительно их устойчивых значений в спокойных условиях.

Настоящая работа является продолжением этих исследований, но в более широком диапазоне периодов, включая колебания, совпадающие с волнами планетарных масштабов.

Рис. 1. Динамические спектры мощности горизонтальной компоненты геомагнитного поля H(t) в обс. "Паратунка" в спокойных геомагнитных условиях (*a*) и при высокой геомагнитной активности (δ).

2. ИСХОДНЫЕ ДАННЫЕ И МЕТОД ОБРАБОТКИ

В качестве исходных данных использованы суточные вариации горизонтальной компоненты (Н) геомагнитного поля, зарегистрированного на Камчатке (обс. "Паратунка", ИКИР ДВО РАН, $\phi = 52.97^{\circ}$ N; $\lambda = 158.25^{\circ}$ E) и в полярной обс. Вагrow ($\phi = 71.32^{\circ}$ N; $\lambda = 203.38^{\circ}$ E), с дискретностью по времени 1 мин. Для анализа выбран период наблюдений сентябрь-октябрь 1999 г. Состояние геомагнитной активности оценено через параметры *Кр* и Σ*Кр*. Результирующий график Σ*Кр* показан на рис. 3 (кривая 4). Видно, что в этот период наблюдалось четыре всплеска геомагнитной активности длительностью ~4-8 сут. Поэтому для оценки спектральной плотности мощности S^2 нTл²/Гц (далее для краткости, спектры мощности) исходных записей H(t) выбрано прямоугольное "окно" длительностью $t_i = 8$ сут, которое смещалось на одни сутки вдоль двухмесячного временного ряда данных для этих обсерваторий в период сентябрь-октябрь 1999 г. Исходные значения поля с дискретностью в 1 мин усреднялись на интервале в 8 мин и дополнялись нулями до 2048 × 8 точек для более детального представления спектров по частоте. Из полного набора последовательности спектров $S^{2}(f)$ для этих обсерваторий в период сентябрь-октябрь 1999 г. в качестве примера на рис. 1 (для обс. "Паратунка") и рис. 2 (для обс. Barrow) приведены два фрагмента. Спектры построены в линейном (по частоте) масштабе, метки на оси абсцисс указывают на частоты, соответствующие периодам T = 8, 12, 24, 48, 72 и 192 ч (гармоники с T = 4 ч по интенсивности значительно слабее выделенных, поэтому на рисунках не приведены). По осям ординат вертикальный отрезок прямой в начале координат на каждом фрагменте одинаковый для всех кривых и равен 1×10^7 нТл²/Гц для данных обс. "Паратунка" и $2 \times$ $\times 10^8$ нТл²/Гц для данных обс. Barrow.

3. ОСНОВНЫЕ РЕЗУЛЬТАТЫ

Рассмотрим рис. 1. Фрагмент 01.09–13.09 (*a*) представляет собой последовательность спектров мощности на интервале $t_i = 8$ сут через одни сутки в спокойный период, когда Kp < 4 и $\Sigma Kp < 25$. Чет-ко выделяются устойчивые колебания с неизмен-

Рис. 2. То же, что и на рис. 1, но по данным H(t) в обс. Ваггоw.

ными по величине периодами $T \sim 24, 12, 8$ ч практически постоянной интенсивности. В отдельные дни (01.09-08.09 и 06.09-13.09) в спектрах мощности появляются колебания в полосе периодов (48-192) ч. Они соответствуют периодам двухдневных, трехдневных и восьмидневных гармоник планетарных атмосферных волн. Их интенсивность ниже интенсивностей колебаний с Т ~ 24 ч (суточный тепловой прилив) и с Т ~ 12 ч (полусуточный тепловой прилив). В этот период наблюдений в спектрах мощности H(t) в обс. Ваггоw (рис. 2*a*) преобладает гармоника с Т ~ 24 ч с интенсивностью на порядок по величине выше интенсивности соответствующей гармоники *H*(*t*) в обс. "Паратунка". Все другие гармоники либо отсутствуют, либо сильно подавлены по сравнению с гармоникой на *T* ~ 24 ч. При высокой магнитной активности: $Kp \sim 7$ и $\Sigma Kp \sim 50$ (рис. 16 и рис. 26) спектры мощности *H*(*t*) в обеих обсерваториях сильно изменяются. В обс. "Паратунка" подавляются колебания с $T \sim 8, 12$ ч, уменьшается интенсивность колебаний с $T \sim 24$ ч, но заметно усиливаются колебания в полосе периодов (48–192) ч, особенно на $T \sim 192$ ч (интенсивность этой гармоники в несколько раз превышает интенсивность на $T \sim 24$ ч). В этот же период наблюдений в обс. Ваггоw с усилением геомагнитной активности возрастает интенсивность гармоники с $T \sim 24$ ч, и усложняется спектр во всем диапазоне. В частности, появляются заметные максимумы в полосе (48–192) ч, но их интенсивность значительно меньше интенсивности основной гармоники. Подобная динамика спектров мощности H(t) наблюдалась и в другие дни усиленной геомагнитной активности: (07–19), (16–28) в сентябре и (10–15), (12–24) в октябре.

Более детальная картина вариаций интенсивности максимумов спектров и значений их периодов, наблюдаемых одновременно в обс. "Паратунка" и обс. Вагтоw в течение сентября—октября, показана на рис. 3. Здесь для каждого максимума в спектре мощности приведены величины спектральной плотности мощности S^2 нТл²/Гц и их периоды: кривые 1 для $T \sim 12$ ч; кривые 2 для $T \sim 24$ ч,

Рис. 3. Динамика интенсивности максимумов спектров и значений их периодов в суточных вариациях H(t) в обс. "Паратунка" (сплошные кривые и левые ординаты) и обс. Ваггом (штриховые кривые и правые ординаты). Кривые 1 для $T \sim 12$ ч, кривые 2 для $T \sim 24$ ч, кривые 3 для $T \sim (48-192)$ ч, кривая 4 – вариации ΣKp -индекса.

кривые 3 для полосы периодов $T \sim (48-192)$ ч. Сплошные линии соответствуют данным H(t) обс. "Паратунка", а штриховые — данным H(t) в обс. Ваггоw. Интервал со 2 по 14 октября на штриховых кривых пропущен из-за отсутствия первичных записей геомагнитного поля. Из анализа рисунка видно следующее: в обс. "Паратунка" интенсивность колебаний с $T \sim 24$ ч изменяется с квазипериодичностью планетарных волн с $T \sim 16$ сут практически с мало меняющейся амплитудой. Подобная периодичность интенсивности наблюдается и в колебаниях с $T \sim 12$ ч, но ее амплитуда последовательно уменьшается на протяжении всего периода наблюдений. На кривой ΣKp -индекса (кривая 4 на рисунке) также проявляется периодичность, но с $T \sim 10$ и 12 сут. Максимумы S^2 кривых 1 и 2 опережают по времени максимумы изменения ΣKp -индекса. По-видимому, это связано с усилением потока УФ-излучения Солнца во время солнечных вспышек, которое примерно на двое суток опережает геомагнитные возмущения и связанные с ними усиления корпускулярных потоков. Не-

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ том 49 № 2 2009

сколько отлично от кривых 1 и 2 поведение интенсивности спектров в полосе периодов (48–192) ч. Во-первых, интенсивность максимумов (7 × 10⁶– 4×10^7) нTл²/Гц существенно превышает максимум с $T \sim 24$ ч (~4 × 10⁶ нTл²/Гц). Во-вторых, интенсивность колебаний в этой полосе периодов изменяется с периодичностью в 10–12 сут, совпадающей с периодичностью изменений ΣKp -индекса. Анализ вариаций значений периодов спектральных максимумов в каждом фрагменте (1, 2, 3) показывает отклонения ΔT в обе стороны относительно значений T в спокойных геомагнитных условиях. При этом наибольшие отклонения ΔT совпадают с максимальными значениями ΣKp -индекса. Например, для максимума с $T \sim 24$ ч $\Delta T \sim \pm 1$ ч.

В период наблюдений (сентябрь—октябрь 1999 г.) на Камчатке было зафиксировано несколько землетрясений с магнитудой $M \ge 5$, отмеченных на кривой 4 рис. 3 стрелками (параметры их см. в работе [Михайлов и др., 2008]). Как видно, землетрясения произошли на фоне высокой геомагнитной активности, которая, по-видимому, оказала наибольшее по сравнению с сейсмической активностью влияние на динамические спектры волновых процессов в *E*-области.

Вернемся к рис. 3 и рассмотрим динамику интенсивности максимумов в спектрах и их периодов в вариациях H(t), наблюдаемых в обс. Barrow. В спокойные дни (01.09-08.09) в спектрах мощности присутствуют колебания только с Т ~ 24 ч. Их интенсивность с ростом геомагнитной активности существенно возрастает благодаря увеличению проводимости Е-слоя ионосферы в результате усиления потоков энергичных частиц. При этом в спектрах появляются дополнительные максимумы на $T \sim 8$ и 12 ч и, что особенно важно, на $T \sim (48-192)$ ч. Интенсивность этих максимумов заметно падает с ослаблением геомагнитной активности. Из-за отсутствия первичных записей H(t) в дни со 2 по 14 октября не удалось, подобно данным в обс. "Паратунка", обнаружить периодичность изменения спектральной интенсивности на Т ~ 24 ч. Но в отличие от данных в обс. "Паратунка" максимумы в спектрах мощности на всех периодах совпадают с максимумами изменения $\Sigma K p$ -индекса.

4. ЗАКЛЮЧЕНИЕ

Анализ спектров мощности суточных вариаций горизонтальной компоненты геомагнитного поля, наблюдаемого на Камчатке и в полярной области, показал следующее:

 в спокойных геомагнитных условиях в спектрах мощности выделены устойчивые приливные колебания со стабильными значениями периодов $T \cong 8, 12, 24$ ч (в среднеширотной ионосфере) и с единственным периодом $T \sim 24$ ч в полярной ионосфере. Колебания с периодами $T \sim (48-192)$ ч в обоих пунктах наблюдений появлялись случайно с интенсивностью значительно слабее интенсивности суточного прилива в атмосфере;

— эффекты высокой геомагнитной активности в среднеширотной *E*-области ионосферы проявлялись в изменении интенсивности колебаний с $T \sim 12$ и 24 ч с периодичностью 16 сут, не совпадающей с периодичностью изменения ΣKp -индекса. Максимальные отклонения значений периодов этих гармоник от значений в спокойных геомагнитных условиях совпадают с максимальными значениями ΣKp -индекса;

— в полярной ионосфере эффект высокой геомагнитной активности проявлялся в усилении интенсивности колебаний с $T \sim 24$ ч, максимальные значения которой совпадают с максимумами ΣKp -индекса;

— в период высокой геомагнитной активности и в среднеширотной, и в полярной ионосфере одновременно усиливались колебания с периодами планетарных волн ($T \sim 48-192$) ч, особенно с $T \sim$ ~ 192 ч. Интенсивность этой гармоники в среднеширотной ионосфере в несколько раз превышает интенсивность гармоники на $T \sim 24$ ч, а периодичность ее изменения совпадает с периодичностью изменения ΣKp -индекса;

 влияние сейсмической активности на волновые возмущения в *E*-области ионосферы в периоды геомагнитных возмущений не обнаружено.

СПИСОК ЛИТЕРАТУРЫ

- Данилов А.Д., Казимировский Э.С., Вергасова Г.В., Хачикян Г.Я. Метеорологические эффекты в ионосфере. Л.: Гидрометеоиздат, 269 с. 1987.
- Митра А. Воздействие солнечных вспышек на ионосферу Земли. М.: Мир, 370 с. 1977 (перевод с анг. А.Р. Mitra. Ionospheric Effects of Solar Flares. Comp. Dordrecht-Holland. Boston: D. Reidel Publish. 1974).
- Михайлов Ю.М., Михайлова Г.А., Капустина О.В. Спектры атмосферных волн в динамо-области ионосферы на Камчатке // Геомагнетизм и аэрономия. Т. 48. № 1. С. 122–128. 2008.
- Lastovicka J. Effects of geomagnetic storms in the lower ionosphere, middle atmosphere and troposphere // J. Atmos. Phys. V. 58. № 7. P. 831–843. 1996.
- Vincent R.A. Planetary and gravity waves in the mesosphere and lower thermosphere // Handbook for MAP/Eds. K. Labitzke, J.J. Barnet, B. Edvards. V. 16. P. 269–277. 1985.