Дробно-дифференциальная модель физических процессов с насыщением и ее применение к описанию динамики COVID-19

  1. Камчатский государственный университет имени Витуса Беринга
  2. Институт космофизических исследований и распространения радиоволн ДВО РАН

 В этой статье была использована дробно-дифференциальная модель физических процессов с насыщением для описания динамики летальных исходов инфекции COVID-19. Математическое описание модели дается интегро-дифференциальным уравнением Риккати с производной дробного переменного порядка типа Герасимова-Капуто. Такое описание позволяет учитывать эффекты насыщения и памяти в динамике распространения COVID-19 среди населения. Здесь эффект насыщения заключается в выходе на плато числа заболевших и умерших, что указывает на стабилизацию динамики распространения COVID-19. Эффект памяти заключается в том, что симптомы инфекции у зараженных проявляются не сразу, а с некоторой задержкой. В статье исследуются данные наблюдений по новым случаям заражения и общему числу смертей в период за 2.5 года (с марта по сентябрь 2022 г) в Российской Федерации и Республике Узбекистан. Далее в работе уточняются параметры модели на основе исследуемых данных по динамике COVID-19. С помощью уточнённой модели делается предварительный прогноз на следующие полгода с последующей проверкой. Показано хорошее согласие между модельными кривыми и кривыми данных по общему числу смертей от COVID-19.

Твёрдый Д. А., Паровик Р. И. Дробно-дифференциальная модель физических процессов с насыщением и ее применение к описанию динамики COVID-19 //Вестник КРАУНЦ. Физико-математические науки. – 2022. – Т. 40. – №. 3. – С. 119-136.