Аппроксимация законов распределения времён ожидания форшоков на основе дробной модели деформационной активности

  1. Институт космофизических исследований и распространения радиоволн ДВО РАН

 В статье рассматриваются два алгоритма построения последовательностей форшоков, связанных с главным событием заданной энергии, на основе ранее разработанной авторами статистической модели деформационного процесса. Для исследования используется каталог землетрясений КФ ЕГС РАН (01.01.1962 - 31.12.2002, зона субдукции Курило-Камчатской островной дуги). К последовательностям форшоков применяется метод наложения «эпох» для получения эмпирического закона распределения форшоков в зависимости от времени до главного события. Эмпирические кумулятивные законы распределения времён ожидания форшоков аппроксимированы функцией Миттаг-Леффлера на основании разработанной авторами дробной модели деформационного процесса и экспоненциальной функцией. Показано, что точность аппроксимации функцией Миттаг-Леффлера выше, чем экспоненциальной. Проведён сравнительный анализ трёх параметров аппроксимирующих функций для законов, полученных по результатам выполнения двух алгоритмов построения последовательностей форшоков. Исходя из полученных значений параметров функции Миттаг-Леффлёра деформационный процесс в рассматриваемой области можно считать нестационарным и близким к стандартному пуассоновскому.

Шереметьева О. В., Шевцов Б. М. Аппроксимация законов распределения времён ожидания форшоков на основе дробной модели деформационной активности //Вестник КРАУНЦ. Физико-математические науки. – 2022. – Т. 40. – №. 3. – С. 137-152.