Global Electron Content: a new conception to track solar activity.

    We developed a method and programs for estimation of the global electron content (GEC) from GPS measurements, using the ionosphere models IRI-2001 and NeQuick. During the 23rd cycle of solar activity, the value of GEC varied from 0.8 to 3.2x1032 electrons, following changes in the solar extreme ultra violet (EUV) radiation and solar radio emission at 10.7-cm wavelength. We found a strong resemblance of these variations, with discernible 11-year and 27-day periodicities. A saturation effect of GEC is found when F10.7 increases. We found that GEC is characterized by strong seasonal (semiannual) variations with maximum relative amplitude at about 10% during the rising and falling parts of the solar activity and up to 30% during the period of maximum. It was found that the relative difference between model and experimental GEC series increase as the smoothing time window decreases. We found that GEC-IRI seasonal variations are out-of-phase with experimental GEC values. The lag between model and experimental maximum of GEC values can reach several tens of days. The variations of GEC lag, on average, 2 days after those of F10.7 and UV. GEC completely reflects the dynamics of the active regions on the solar surface. The amplitude of the 27-day GEC variations decreases from 8% at the rising and falling solar activity to 2% at the maximum and at the minimum. We also found that the lifetime of contrast long-living active formations on the Sun's surface in EUV range for more than 1 month exceeds the one in radio range (10.7 cm).

    E.L. Afraimovich, E.I. Astafyeva, A.V. Oinats, Yu.V. Yasukevich, I. V. Zhivetiev. Global Electron Content: a new conception to track solar activity. //Annales Geophysicae, 2008, V. 26, N.2, 335-344.