НАНОТЕХНОЛОГИИ

УДК 54.052

ПОЛУЧЕНИЕ НАНОПОРОШКА ДИОКСИДА КРЕМНИЯ НА ОСНОВЕ ГИДРОТЕРМАЛЬНОГО РАСТВОРА КРИОХИМИЧЕСКОЙ ВАКУУМНОЙ СУБЛИМАЦИИ

Горев Д.С.¹, Потапов В.В.^{1,2}, Шалаев К.С.¹

¹ Научно-исследовательский геотехнологический центр ДВО РАН, 683002,

г. Петропавловск-Камчатский, Северо-Восточное шоссе, 30, а/я 56

² Филиал Дальневосточного Федерального государственного университета, 683031,

г. Петропавловск-Камчатский, ул. Тушканова, 11/1

E-mail: parovikroman@gmail.com

В работе рассмотрена методика получения нанопорошка диоксида кремния на основе гидротермального раствора криохимической вакуумной сублимации.

Ключевые слова: сублимация, кремнезем, нанопорошок

© Горев Д.С., Потапов В.В., Шалаев К.С., 2013

NANOTECHOLOGY

MSC 82D80

GETTING NANO-SILICA-BASED HYDROTHERMAL SOLUTIONS CRYOCHEMICAL VACUUM SUBLIMATION

Gorev D.S.¹, Potapov V.V.^{1,2}, Shalaev K.S.¹

¹ Russian Academy of Sciences research geotechnological center, 683002, North-east of the highway, 30

² Branch of the Far Eastern Federal State University, 683031, Petropavlovsk-Kamchatsky, Tushkanova st., 11/1, Russia

E-mail: parovikroman@gmail.com

The paper considers the model of choice by high-school optimal solutions for the distribution of sets of entrants in its branches.

Key words: sublimation, silica, nanopowder

© Gorev D.S., Potapov V.V., Shalaev K.S., 2013

Введение

Существует технологический подход к выделению полезных компонентов гидротермальных растворов на основе их баромембранного концентрирования и последующей криохимической вакуумной сублимацией [1]-[6].

Концентрированный водный золь кремнезема получен из жидкой фазы гидротермальных теплоносителей (сепаратов) скважин Мутновских геотермальных электрических станций (ГеоЭС). Отделение (сепарацию) жидкой фазы от паровой фазы двухфазного потока проводили в сепраторах ГеоЭС. Диапазон значений рН исходного сепарата 9,0–9,4, концентрации кремнезема C_t =600–800 мг/кг, температура раствора 70 ⁰С.

Использованное оборудование

Установка для мембранного концентрирования гидротермального раствора включала патрон (патроны) с мембранными фильтрами, насос, расходомеры, манометры, запорную и регулирующую арматуру, емкости исходного раствора, концентрата и фильтрата.

Использованы ультрафильтрационные мембраны капиллярного типа. Исходная среда подается в длинные капиллярные трубки, стенки которых представляют собой мембранный слой. При движении внутри трубки часть среды фильтруется наружу в радиальном направлении и накапливается в корпусе фильтр-патрона в пространстве между трубками (фильтрат). Та часть среды, которая прошла по всей длине трубки, не фильтруясь через стенки мембраны (концентрат), поступает в коллектор концентрата и выводится из патрона в осевом направлении. Фильтрат выводится из корпуса фильтр патрона в боковом направлении.

Применяли мембраны, выполненные из полиэфирсульфона, либо полиакрилонитрила. Диаметры пор мембранного слоя распределены в диапазоне 20–100 нм. Двухстадийным мембранным концентрированием гидротермального сепарата получен золь MB с содержанием SiO₂ 40 г/дм³.

Золь МВ кремнезема был использован для получения малоагрегированного нанодисперсного порошка УФ44. Криохимическая вакуумная сублимация, основанная на сочетании низко- и высокотемпературных воздействий на перерабатываемые материалы, предоставляет широкие возможности для получения нанодисперсных материалов, в том числе и из золей, суспензий.

Технологическая схема криохимической вакуумной сублимации включает следующую последовательность основных технологических фаз производства:

- диспергирование золя и криокристаллизация капель дисперсной среды в жидком азоте;
- сублимационное удаление растворителя из криогранулята, полученного на предыдущей стадии;
- утилизация (десублимация) растворителя.

Диспергирование растворов на отдельные капли применяют для создания развитых межфазных поверхностей, обеспечивающих высокую интенсивность тепло- и массообменных процессов, сопровождающих технологические фазы криокристаллизации и сублимации. Главная цель процесса криокристаллизации заключается в сохранении высокой химической и гранулометрической однородности, присущих диспергируемоой золи. Возможность сохранения высокой химической однородности определяется различными условиями, в том числе размером замораживаемых капель раствора, его температурой, физико-химической природой и температурой хладоагента. Гранулометрическая однородность продукта характеризуется размерами как самих криогранул, так и дисперсных кристаллитов, образованных на стадии старения исходного гидротермального раствора.

Особенность криогранулирования состоит в том, что процесс кристаллизации водной золи проводят при температурах, значительно более низких, чем температура замерзания воды. Такое понижение температуры необходимо для увеличения скорости замораживания, что позволяет исключить агрегацию и зафиксировать равномерно распределенные наночастицы кремнезема, находящего в золи, в твердом состоянии. В дальнейшем при сублимационном удалении воды остается малоагрегированный порошок кремнезема с дисперсностью, соответствующей дисперсности кремнезема в водном золе.

Стадию сублимации льда проводят при давлении более низком, чем давление, соответствующее тройной точки воды, для которой эти параметры составляют: давление (p = 610 Па) и температура (T = 0,0076 ⁰C). Это позволяет свести к минимуму агломерацию сформировавшихся на стадии замораживания частиц кремнезема, благодаря исключению появления фрагментов капельной влаги.

На стадии сублимации теплоту, затрачиваемую на испарение льда, к продукту подводят путем кондуктивного теплопереноса (теплопроводностью). Удельная теплота сублимации вещества $q_{\rm суб}$ примерно равна сумме их удельных теплот плавления $q_{\rm ПЛ}$ и испарения $q_{\rm ИСП}$. Для воды величина $q_{\rm суб}$ достигает примерно 3 МДж/кг, а $q_{\rm ПЛ}$ составляет всего примерно 0,34 МДж/кг.

Сублимационная сушка криогранул золя кремнезема проводилась на экспериментальной установке УВС-2Л. Установка сублимационная лабораторная является экспериментальным образцом и предназначена для исследования и выбора оптимальных режимов процесса сушки нанопорошков, изготовленных методом криогрануляции.

Технические характеристики установки УВС-2Л:

- 1. Производительность установки по испаренной влаге- 1,0 л/цикл сушки.
- 2. Остаточная влажность высушенного продукта 0,3%.
- 3. Температура рабочих полок -20. . . +150 °С.
- 4. Величина вакуума 3х10⁻² мм рт. ст.
- 5. Установленная мощность:
- нагревателей 4 кВт;
- вакуумного насоса 0,75 кВ.
- 6. Номинальное напряжение питания 380/220 В.
- 7. Частота сети 50 Гц.
- 8. Род тока: переменный, трехфазный.

Рис. 1. Установка вакуум-сублимационная УВС-2Л

Установка (рис. 1) состоит из горизонтально расположенной цилиндрической сублимационной камеры 1, смонтированной на раме 3, и вертикального цилиндрического десублиматора 2, соединенного коленом с сублимационной камерой. Внутри рамы установлены: вакуумный насос 4, электромагнитный клапан 5, кран для слива конденсата 6, клапан-натекатель 7 и фильтр 9, а также система трубопроводов с арматурой. Установка оснащена пультом управления 8, который крепится на передней части рамы, и комплектом КИПиА. В сублимационной камере установлены поддоны, в которые помещается исходный продукт для проведения сушки.

Работа установки осуществляется в автоматическом режиме. Первоначально включается вакуумный насос в режиме разогрева и подготовки его к работе. В загрузочную горловину трубы десублиматора заливается жидкий азот до уровня на 20 мм ниже верхнего фланца и закрывается крышка загрузочного патрубка. В сублимационную камеру на нагревательные плиты, предварительно охлажденные в холодильнике до -60 0 С, устанавливают в требуемом количестве поддоны с высушиваемым материалом. В случае, если на одну из нагревательных плит не устанавливаются поддоны, ее допускается снять.

При установке поддонов необходимо обеспечить свободный проход воздуха в каналах между стенками сублимационной камеры и стенками поддонов. Закрывается крышка сублимационной камеры. Удостоверившись в работоспособности вакуумного насоса (по информации с соответствующего преобразователя манометрического), с помощью электромагнитного клапана производят переключение на вакуумирование системы (сублимационной камеры и десублиматора). После установки рабочего вакуума в системе автоматически включается нагрев плит. Контроль и поддержание температуры и вакуума в процессе работы осуществляется в автоматическом режиме. В процессе работы контролируется уровень жидкого азота в десублиматоре. Подача соответствующего звукового и светового сигнала свидетельствует о необходимости долить азот в трубу десублиматора.

По окончании технологического процесса отключается вакуумный насос и нагревательные плиты. С помощью клапана-натекателя добиваются уравнивания давления в сублимационной камере и десублиматоре до атмосферного. Засасываемый воздух проходит через фильтр, предварительно заполненный силикагелем. После этого допускается отключить пульт управления, открыть сублимационную камеру и извлечь поддоны с материалом. В конце работы необходимо открыть кран и слить конденсат из десублиматора.

В процессе работы УВС-2Л контролируются следующие технологические параметры:

– вакуум в сублимационной камере – 5×10^{-2} мм рт. ст. с точностью $0,1 \times 10^{-2}$ мм рт. ст. замеряется с помощью преобразователя манометрического ПМТ4М – 8511, установленного на колене, соединяющем сублимационную камеру и десублиматор;

– вакуум в линии проверки насоса – $5x10^{-2}$ мм рт. ст. с точностью $0,1x10^{-2}$ мм рт. ст. замеряется с помощью преобразователя манометрического ПМТ4М – 8511, установленного на фланце вакуумного насоса вертикально на отводе тройника;

– температура нагревательных плит контролируется с помощью датчиков ДТС014-100П.ВЗ с точностью до 0,1 ^оС , закрепленных на нагревательных плитах;

– температура материала контролируется с помощью датчиков ДТС014-100П.В3 с точностью до 0,1 $^0\rm C$, установленных на специальных пластинах, размещенных на поддонах;

– температура поддона контролируется с помощью датчиков ДТС014-100П.В3 с точностью до 0,1 0 С, закрепляемых на поддонах;

– температура внутри сублимационной камеры контролируется с помощью датчиков ДТС014-100П.В3 с точностью до 0,1 $^0\mathrm{C};$

– уровень жидкого азота контролируется с помощью двух датчиков ДТС014-100П.ВЗ, закрепленных на держателе, который в свою очередь зафиксирован в пазу на фланце трубы десублиматора.

Определение размеров частиц золя SiO₂ методом динамического светорассеяния

На рис. 2 и в табл. 1 представлены результаты определения среднего диаметра наночастиц золя МВ. Для образца МВ минимальный размер частиц составил 25.0 нм, среднее значение диаметра частиц 59.8 нм, на частицы с диаметрами 25,0–100 нм приходится 80–85 % всей массы кремнезема.

Рис. 2. Средний диаметр частиц образца золя МВ

Таблица 1

d(nm)	G(d)	C(d)
25,0	26	5
30,3	44	10
34,5	58	15
38,3	70	20
41,9	80	25
45,3	87	30
48,8	93	35
52,4	97	40
56,0	99	45
59,9	100	50
64,1	99	55
68,5	97	60
73,5	93	65
79,2	87	70
85,7	80	75
93,8	70	80
104,0	58	85
118,5	44	90
143,7	26	95

Распределение частиц золя МВ по размерам

Режим работы установки УВС-2Л

На рис. 3 и в табл. 2 приведены режимные параметры установки УВС-2Л при получении порошка УФ-44.

Рис. 3. Параметры установки УВС-2Л в зависимости от времени

Таблица	2
---------	---

Hupumerphi yerunobki v De 201									
Nº	Время	t, полки	t,	t,	t, полки	t,	t,	Вакуум	t, цб
п/п		верх	лотка	мат.	низ	лотка	мат.		
			верх	верх		низ	низ		
1	12:16	-22	-63	-85,5	-30,4	-49,4	-50,8	2,14	21,5
2	12:26	61	-34,4	-53,4	74	-38,6	-39,1	5,56	31
3	13:10	92,4	6,4	-40,5	93,3	5	-27,8	4,87	35
4	13:25	74,1	6,5	-39,2	77,9	9,9	-25,4	4,73	32,2
5	13:48	54,3	3,6	-38,8	60,5	10,7	-26,9	3,87	29,6
6	14:13	39,9	-0,6	-39,2	46,9	8,2	-26,7	4,54	27,8
7	14:23	35,9	-2,1	-39,7	43,1	6,8	-25,7	4,43	27,2
8	14:38	29,6	-3,6	-38,7	37,2	5,4	-24,9	3,23	16,4
9	14:48	25,5	-4,3	-37,8	33,3	4,7	-23,9	2,65	25,8
10	15:12	19,1	-6,8	-38,7	27,1	1,3	-25	3,42	24,7
11	15:20	41,7	-3,8	-38,2	26,4	2,9	-22,7	3,86	24,6
12	15:38	36,4	-0,6	-37,3	64,4	8,1	-20,3	3,61	30,8
13	16:03	40,9	1,8	-36,4	53,2	15,1	-16,3	3,77	29
14	16:28	60,9	11,9	-33,4	60	20,3	-9,1	3,37	30,5
15	16:41	59,8	13,2	-33,2	60,1	21,8	-8	3,53	30,5
16	16:58	59,9	14,9	-32,2	60	24,1	-3,8	3,81	30,5
17	17:12	83,7	19,3	-31,2	60,2	26,9	1,4	3,48	30,8
18	17:29	79,8	24,5	-29,2	59,9	30	5,3	3,59	30,9
19	18:02	86,9	31,3	-26,4	60	37,2	20,9	3,59	31,3
20	19:37	87,1	36,8	-19,6	60	54,8	56	3,23	31,5
21	19:54	87	38,5	-18	58,2	56	57,8	3,62	31,2
22	20:36	86,9	40,8	-12,7	51,9	54,9	57,3	3,53	30,1
23	21:34	87	43,3	-5,5	47	51,6	54,6	3,54	29,4
24	21:49	87,1	43,8	-3,6	-	-	-	3,3	29,3
25	22:10	87,1	44,7	-0,9	-	-	-	3,34	29
26	22:35	87	46,2	2,8	-	-	-	3,09	28,9
27	22:54	86,9	48	7	-	-	-	2,51	28,7
28	23:06	86,6	49,4	-9,4	-	-	-	3,01	28,7
29	23:29	86,9	50,2	13,2	-	-	-	4,89	28,8

Параметры установки УВС-2Л

Характеристики порошка УФ-44

Характеристики пор порошка УФ-44, полученного в указанном технологическом режиме на установке УВС-2Л, были определены методом низкотемпературной адсорбции азота. В табл.3 указан объем сорбированного азота в зависимости от относительного давления в камере порошкомера ASAP2010N, на рис. 4 – соответствующее кривые сорбции-десорбции. В табл. 4 – площадь, объем пор, средний диаметр порошка УФ-44.

Таблица 3

данные низкотемпературной адсороции азота для порошка у Ф-44					
Относительное давление (p/p_0)	давление,	Объем абсорбента, см-/г	Бремя		
0.010022006	MM pT. CT.	02 1272	0.45		
0,010233200	7,00211	20,1070	0:45		
0,052579187	24,20202	29,2309	0:40		
0,067594850	50,21527	34,0997	0:48		
0,079965199	59,40503 74,07051	35,3672	0:49		
0,100118338	74,37651	37,3456	0:51		
0,120222783	89,31182	39,1016	0:52		
0,1402/1514	104,20574	40,5286	0:53		
0,160222762	119,02724	42,1425	0:55		
0,180299355	133,94186	43,5208	0:56		
0,200348085	148,83578	44,8773	0:57		
0,250184510	185,85857	47,1917	0:58		
0,300403717	223,16576	49,8615	1:00		
0,350219333	260,17303	52,8683	1:01		
0,399986025	297,14401	56,7009	1:03		
0,450414265	334,60645	60,8171	1:04		
0,500083515	371,50504	65,3616	1:06		
0,549899092	408,51233	71,0848	1:07		
0,600125301	445,82468	78,1284	1:09		
0,649954763	482,84229	87,0505	1:11		
0,699993033	520,01501	98,4441	1:13		
0,750066138	557,21362	112,3762	1:15		
0,800550124	594,71747	127,5065	1:17		
0,820452610	609,50275	133,5366	1:19		
0,850810964	632,05554	140,5656	1:20		
0,874827670	649,89722	144,8011	1:22		
0,899742545	668,40613	148,9388	1:23		
0,925012266	687,17865	153,1641	1:25		
0,949314231	705,23224	159,6908	1:26		
0,974925161	724,25824	169,7615	1:28		
0,980647489	728,50928	173,3344	1:30		
0,990066175	735,50629	181,5461	1:31		
0,994765042	738,99701	189,2422	1:34		
0,974785901	724,15479	178,3289	1:36		
0,937055455	696,12537	160,8221	1:38		
0,908576501	674,96875	153,3086	1:40		
0,882749738	655,78241	148,2155	1:42		
0,857194512	636,79779	144,4917	1:44		
0,832043182	618,11322	141,2205	1:45		
0,825464670	613,22614	139,8841	1:46		

Данные низкотемпературной адсорбции азота для порошка УФ-44

Относительное давление (р/р ₀)	Давление,	Объем абсорбента, см ³ /г	Время
	мм рт. ст.		
0,799366534	593,8382	137,3392	1:48
0,733157052	544,6521	130,0907	1:50
0,701413242	521,07007	122,2394	1:52
0,652265869	484,55917	104,5839	1:54
0,597967300	444,22153	86,1893	1:57
0,549376968	408,12445	73,4655	1:59
0,500027811	371,46365	64,7622	2:01
0,450595221	334,74088	59,0664	2:03
0,400960724	297,8681	54,6806	2:04
0,350567402	260,43161	50,6362	2:06
0,300508202	223,24333	47,0738	2:07
0,250616135	186,17921	44,3429	2:09
0,182868113	135,85016	41,6455	2:10
0,140814486	104,60911	39,2893	2:12

Окончание табл. 3

Рис. 4. Кривые сорбции – десорбции для порошка УФ-44

Таблица 4

		L , , , , , , , , , , , , , , , , , , ,	
N⁰	Характеристика	Единицы измере-	Показатели
п/п		ния	
1	ВЕТ Площадь	M ² /Γ	165,3
2	ВЈН Площадь пор по кривой адсорбции	M^2/Γ	148,5
3	ВЈН Площадь пор по кривой десорбции	M ² /Γ	164,0
4	Объем пор определенный по одной точке	см ³ /г	0,247
5	ВЈН Объем пор по кривой адсорбции	см ³ /г	0,284
6	ВЈН Объем пор по кривой десорбции	см ³ /г	0,292
7	Сред. диаметр пор	НМ	5,98
8	Сред. диаметр пор по кривой адсорбции	HM	7,64
9	Сред. диаметр пор по кривой десорбции	НМ	7,12
10	Площадь микропор	M ² /Γ	6,54
11	Объем микропор	см ³ /г	0,0005

Характеристики порошка УФ-44, полученные методом низкотемпературной адсорбции азота

Выводы

Технологический режим, использованный нами, позволяет методом криохимической вакуумной сублимации получать на основе водного золя кремнезема со средним диаметром частиц около 60 нм ультрадисперсные порошки, имеющие удельную поверхность до 165 м²/г, объем пор – до 0,25 см³/г, при среднем диаметре пор порошка 6 нм.

Библиографический список

- 1. Потапов В.В. Коллоидный кремнезем в высокотемпературном гидротермальном растворе. Владивосток: Дальнаука. 2003. 216 с.
- 2. Потапов В.В., Аллахвердов Г.Р., Сердан А.А. (мл.), Мин Г.М., Кашутина И.А. Получение водных золей кремнезема мембранным концентрированием гидротермальных растворов // Химическая технология. 2008. № 6.С. 14-22.
- 3. Потапов В.В., Ревина А.А., Баранова Е.К. Оптические свойства нанодисперсного кремнезема в гидротермальных растворах // Журнал физической химии. 2008. № 6. С. 1137-1144.
- 4. Потапов В.В., Трутнев Н.С., Горбач В.А., Генералов М.Б., Романова И.А. Получение нанопорошков кремнезема из природных гидротермальных растворов // Химическая технология. 2009. № 12. С. 712-719.
- 5. Потапов В.В., Шитиков Е.С., Трутнев Н.С. Использование золей и порошков кремнезема, полученных из гидротермальных растворов, как нанодобавок в цементы // Химическая технология. 2010. № 10. С. 14-23.
- 6. Лесовик В.С., Потапов В.В., Алфимова Н.И., Ивашова О.В. Повышение эффективности вяжущих за счет использования наномодификаторов // Строительные материалы. 2011. № 6. С. 12-18.

Поступила в редакцию / Original article submitted: 15.03.2013