УДК 517.955

МОДЕЛЬ РАДИОАКТИВНОГО РАСПАДА РАДОНА

Паровик Р.И.^{1,2}

¹ Институт космофизических исследований и распространения радиоволн ДВО РАН, 684034, Камчатский край, с. Паратунка, ул. Мирная, 7

² Филиал Дальневосточного Федерального государственного университета, 683031, г. Петропавловск-Камчатский, ул. Тушканова, 11/1

г. петропавловск-камчатский, ул. тушканова,

E-mail: parovikroman@gmail.com

В работе предложена модель радиоактивного распада вещества на примере радона (^{222}Rn) . В модели предполагается, что вероятность распада радона, а также период его полураспада зависят от фрактальных свойств геологической среды. Установлены зависимости параметров распада от фрактальной размерности среды.

Ключевые слова: фрактальная размерность, радиоактивный распад, дробная производная

⑦ Паровик Р.И., 2012

MSC 00A71

MODEL RADIOACTIVE RADON DECAY

Parovik R.I.^{1,2}

¹ Institute of Cosmophysical Researches and Radio Wave Propagation Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia

 $^2\,$ Branch of the Far Eastern Federal State University, 683031, Petropavlovsk-Kamchatsky, Tushkanova st., 11 / 1, Russia

E-mail: parovikroman@gmail.com

In a model of radioactive decay of radon in the sample (^{222}Rn) . The model assumes that the probability of the decay of radon and its half-life depends on the fractal properties of the geological environment. The dependencies of the decay parameters of the fractal dimension of the medium.

Key words: fractal dimension, radioactive decay, a fractional derivative

© Parovik R.I., 2012

ВВЕДЕНИЕ

В 2005 году вышла работа немецких физиков [1], в которой приводился эксперимент по ускорению процесса распада нестабильных ядер железа (⁵⁷*Fe*). С помощью искусственно созданной слоистой структуры с центром в виде тонкой пленки ⁵⁷*Fe* был организован рентгеновский волновод.

В эксперименте короткая вспышка рентгеновского излучения проходила вдоль железного слоя волновода и приводила ядра в неустойчивое возбужденное состояние. Далее через долю микросекунды ядра переходили в исходное состояние с испусканием рентгеновского фотона исходной энергии, при этом наблюдалось изменение вероятности распада возбужденного состояния ядра. В результате такого изменения ядро в 6 раз быстрее стало испускать гамма-квант.

Авторы объясняют этот эффект наличием ограниченного пространства (стенками волновода) так как, попадая в волновод, фотон имеет несколько другое распределение, чем в пустом неограниченном пространстве.

Следовательно, можно сделать вывод о том, что распад нестабильных ядер может в зависимости от конкретных ситуаций ускоряться или замедляться. Поэтому может изменяться T – период полураспада вещества и λ – вероятность распада вещества.

Если волновод заполнен фрактальной геологической средой, то естественно предположить, что параметры λ и T должны зависеть от фрактальной размерности среды. В настоящей работе согласно этому предположению предложена новая модель радиоактивного распада радона.

МОДЕЛЬ РАДИОАКТИВНОГО РАСПАДА ²²²RN.

Закон распада радионуклидов [2] интерпретируется так: число атомов радона ΔN , распадающихся за промежуток времени между t и $t + \Delta t$, пропорционально числу атомов радона еще не распавшихся к моменту и некоторой постоянной величины λ , характеризующей скорость превращений данного элемента.

С помощью математического уравнения этот закон можно записать в дифференциальной форме следующим образом:

$$\frac{dN(t)}{dt} = -\lambda N(t) \tag{1}$$

Знак минус говорит об уменьшении числа атомов в процессе распада. Уравнение (1) предполагает наличие стопроцентной концентрации частиц радиоактивного радона в рассматриваемом пространстве. Если известно число атомов радона N_0 в начальный момент времени t = 0, то решение уравнения (1) запишется так:

$$N = N_0 e^{-\lambda t} \tag{2}$$

Из уравнения (1) постоянная распада определяется как отношение:

$$\lambda = \left| \frac{\frac{dN(t)}{dt}}{N(t)} \right|$$
(3)

Для радона $\lambda = 2, 1 \cdot 10^{-6} c^{-1}$ [2]. Период полураспада радона *T* определяется согласно уравнению (2), когда $N = N_0/2$ и составляет $T = \ln 2/\lambda \approx 3,82$ дня (рис.1).

Рис. 1. Кривые распада (1) радона и его накопления (2)

В работе [2] автор пишет, что «... константа λ является основной константой радиоактивного распада, и ее значение для радионуклида (радона) остается практически неизменным в различных условиях существования его в земной коре». Однако как показал эксперимент в работе [1], а также и в работах [3],[4] можно создать условия, при которых процесс распада может протекать быстрее или медленнее.

Если рыхлые отложения считать фрактальной средой со сложной структурой пор и проводными каналами, то естественно предположить, что распад радона будет зависеть от фрактальной размерности геосреды.

Уравнение распада радона в некоторой точке фрактальной геосреды может быть записано в терминах дробной производной [5]

$$\partial_{0t}^{\alpha} N(\tau) = -\lambda N(t), \qquad (4)$$

где $\partial_{0t}^{\alpha} N(t) = \frac{1}{\Gamma(1-\alpha)} \sum_{k=1}^{\infty} \frac{N'(\tau) d\tau}{(t-\tau)^{\alpha}}$ – оператор дробного дифференцирования, $\Gamma(x)$ – гамма-функция Эйлера, $0 < \alpha < 1$.

Параметр α пропорционален или равен фрактальной размерности среды [6] и показывает количественную меру того как частицы радона заполняют окружающее пространство. Надо отметить, что при значении параметра $\alpha = 1$ мы приходим к уравнению (1). Фрактальные свойства геосреды обуславливают эффекты памяти: частица «помнит» как она попала именно в эту точку фрактальной среды. Временная корреляция описывается интегралом со степенным ядром, стоящим в правой части уравнения (4).

Вероятность распада радона во фрактальной среде из уравнения (4) определяется:

$$\lambda = \left| \frac{\partial_{0t}^{\alpha} N(\tau)}{N(t)} \right| \tag{5}$$

Пусть на некоторой глубине фрактального грунта расположен датчик регистрации концентрации радона в одинаковые моменты времени τ . Тогда можно в соотношении (5) аппроксимировать оператор дробной производной [6]:

$$\partial_{0t}^{\alpha} N(\tau) = \frac{\tau^{-\alpha}}{\Gamma(2-\alpha)} \sum_{k=0}^{j} b_k \left(N_{k-j+1} - N_{k-j} \right), b_k = (j+1)^{1-\alpha} - j^{1-\alpha}, j = 1...M, \quad (6)$$

где М - количество данных.

Следовательно, выражение (5) согласно (6) запишется так:

$$\lambda = \left| \frac{\frac{\tau^{-\alpha}}{\Gamma(2-\alpha)} \sum_{k=0}^{j} b_k \left(N_{k-j+1} - N_{k-j} \right)}{N(t)} \right|.$$
(7)

Для уравнения (4) можно задать начальное распределение радона, как и для уравнения (1):

$$N(0) = N_0 \tag{8}$$

Решение уравнения (4) с учетом условия (8) известно [7] и его можно записать в терминах специальной функции Миттаг-Леффлера:

$$N(t) = N_0 E_\alpha \left(-\lambda t^\alpha \right), \tag{9}$$

где $E_{\alpha}(-\lambda t^{\alpha}) = \sum_{k=0}^{\infty} \frac{(-\lambda t^{\alpha})^k}{\Gamma(\alpha k+1)}$ – функция Миттаг-Леффлера, свойства которой подробно рассмотрены в книге [8]. На рис. 2 представлены расчетные кривые, полученные по формулам (2) и (9) для различных значений параметра α .

Рис. 2. Расчетные кривые распада радона, полученные по формулам (2) и (9): кривая $1 - \alpha = 1$; кривая $2 - \alpha = 0,8$; кривая $3 - \alpha = 0,6$; кривая $4 - \alpha = 0,4$

Согласно рис. 2 можно сделать вывод, что при значении $0 < \alpha < 1$ вероятность распада радона уменьшается, а решение (2) имеет уже другой (степенной) вид. Степенная функция имеет так называемые «тяжелые» затягивающиеся хвосты, что

обуславливает замедление скорости распада радона. Однако, когда параметр α изменяется в пределах от 1 до 2, то уравнение (4) будет иметь другой тип и можно предположить, что скорость распада радона будет увеличиваться.

Функция Миттаг-Леффлера в (9) может быть также вычислена с помощью несобственного интеграла [9]:

$$E_{\alpha}(-\lambda t^{\alpha}) = \frac{\sin(\alpha \pi)}{\alpha} \int_{0}^{\infty} \frac{x^{\alpha-1} e^{-xt\lambda^{\frac{1}{\alpha}}}}{x^{2\alpha} + 2x^{\alpha}\cos(\alpha \pi) + 1}.$$
 (10)

Подставим (10) в (9) с учетом $N = N_0/2$ и t = T, тогда получим в неявном виде выражение для периода полураспада

$$\int_{0}^{\infty} \frac{x^{\alpha-1} e^{-xT\lambda^{\frac{1}{\alpha}}}}{x^{2\alpha} + 2x^{\alpha}\cos\left(\alpha\pi\right) + 1} = \frac{\pi}{2\sin\left(\alpha\pi\right)}$$
(11)

Решив уравнение (11) в зависимости от значения параметра α , определим T, а параметр λ можно оценить с помощью формулы (7). Соотношения (7) и (11) показывают, что параметры T и λ зависят от значений α .

ЗАКЛЮЧЕНИЕ

Уравнение типа (9) было использовано автором в работе [10] для определения параметра по экспериментальным данным радоновых полей на Петропавловске-Камчатском геодинамическом полигоне. Результатом работы стало установление связи параметра α с сейсмической активностью Южной Камчатки. Деформационные возмущения в земной коре изменяют ее фрактальную структуру вследствие чего, изменяется и фрактальная размерность.

Уменьшение скорости распада радона приводит к увеличению его миграционной способности (диффузионной длины [2]), а это в свою очередь может объяснить аномалии в поле подпочвенного радона, наблюдаемые на сети станций.

Интересен случай когда $1 < \alpha < 2$, тогда тип уравнения будет изменяться вместе с вероятностью распада радона. Известно, что на вероятность распада радона могут влиять различные воздействия: магнитное поле [3], интерференция волновых функций ядра [4], солнечная активность [11], а также возможны и другие воздействия.

Библиографический список

- Rohlsberger R. et al. Accelerating the spontaneous emission of X rays from atoms in cavity // Physical Review Letters. - 2005. - Vol. 95 (9).
- 2. Новиков Г.Ф. Радиометрическая разведка. Л.: Недра, 1989. 407 с.
- 3. Михеев В.Л., Морозов В.А., Морозова Н.В. О возможности контролируемого изменения скорости радиоактивного распада атомных ядер // Письма в ЭЧАЯ. 2008. Т.5. № 4 (146). С. 623–627.
- 4. Филиппов Д.В. Увеличение вероятности разрешенных электронных β-распадов в сверхсильном магнитном поле // Ядерная физика. 2007. Т. 70. № 2. С. 280–287.

- 5. Нахушева В.А. Математическое моделирование нелокальных физических процессов в средах с фрактальной структурой: дис. ... д-ра физ.-мат. наук. Таганрог, 2008. 268 с.
- 6. Беданокова С.Ю. Математическое моделирование солевого режима почв с фрактальной структурой // Вестник СамГУ. Серия Физико-математические науки. – 2007. – № 2 (15). – С. 102–109.
- 7. Нахушев А.М. Дробное исчисление его применение. М.: Физматлит, 2003. 272 с.
- 8. Джрбашян М.М. Интегральные преобразования и представления функций в комплексной области. – М.: Наука, 1966. – 672 с.
- 9. Gorenflo R., Loutchko J., Luchko Y. Computation of the Mittag-Leffler function and its derivative // Fract. Calc. Appl. Anal. 2002. Vol. 5. P. 491-518.
- 10. Паровик Р.И., Фирстов П.П., Макаров Е.О. Математическое моделирование фрактальной размерности геосреды и сейсмическая активность Южной Камчатки // Вестник КРАУНЦ. Физикоматематические науки. – 2011. – № 2 (3). – С. 42–49.
- 11. E. Fischbach et al. Additional experimental evidence for a solar influence on nuclear decay rates // Astroparticle Physics. 2012. Vol. 37. P. 81–88.

Поступила в редакцию / Original article submitted: 05.02.2012