- Шестопалов И.П., Харин Е. П. О связи сейсмичности Земли с солнечной и геомагнитной активностью //Солнечно-земные связи и электромагнитные предвестники землетрясений, Ш Междунар. конф. с. Паратунка Камч. обл.16-21 августа 2004, сб. докл. - Петропавловск – Камч.: ИКИР ДВО РАН, 2004. С. 130-141.
- 6. Шестопалов И.П., Харин Е. П. Изменчивость во времени связей сейсмичности Земли с циклами солнечной активности различной длительности // Геофизический журнал. 2006. Т. 28, №4. С.59-70
- 7. http://neic/usgs.usgs.uk
- 8. <u>http://omniweb.gsfc.nasa.gov/ow.html</u>.

МЕТОДИКА ПРОГНОЗА СИЛЬНЫХ ЗЕМЛЕТРЯСЕНИЙ С МАГНИТУДОЙ М ≥ 7.6 И ОЦЕНКА ЕЁ ЭФФЕКТИВНОСТИ ДЛЯ РАЗЛИЧНЫХ РЕГИОНОВ ЗЕМЛИ

APPROACH TO FORECASTING M≥7.6 STRONG EARTHQUAKES AND ITS EFFECTIVENESS IN DIFFERENT REGIONS OF THE EARTH

В.А. Широков¹, Ю.К. Серафимова²

¹Институт вулканологии и сейсмологии ДВО РАН, ²Камчатский филиал Геофизической службы РАН

Studying phase distribution (F_I) of lunar tide with a period of T_1 =18.6 yr. and that for the Hale solar cycle (F_2) at $T_2 = 22$ yr. for 1737 – 2007 earthquakes we suggest a new approach to a long-period forecasting for the strongest earthquakes occurring in different regions of the Earth. Two-dimensional phase plane (F_I , F_2) revealed statistically significant seismically unsafe windows and a short critical phase interval of about one and a half year in the Hale cycle epoch of minimum.

Based on this approach we present the long-term forecast to the $M \ge M_0$ earthquakes in the next 20 years for various regions of the Earth. Retrospective data showed that 89% of the analyzed number of earthquakes agrees with the forecast. As an example, we show seismically unsafe intervals for the earthquakes at focal depth up to 100 km: Japan ($M_0=7.9$): X.2007 – III.2010; VII.2024 – X.2028; the Kurile Islands ($M_0=7.6$): V.2012 – V.2015; Kamchatka ($M_0=7.6$): XI.2014 – VII.2017yrs.

In the given unsafe interval (2006) for the Pacific seismic belt, the Hale cycle from X.2006 through I.2008 yrs. suggested up to six $M \ge 7.6$ strong earthquakes. In complete agreement with the forecast, there were three M = 8.1 - 8.3 earthquakes that occurred in Kuriles in November 2006, and in Kuriles and Solomon Islands in January and April 2007.

Effectiveness I of the long-term forecasts made on retrospective data exceeds from 2 to 5.9 times (Aleutian Islands and Kamchatka, respectively) the effectiveness of the random earthquake forecasting $(I_0=1)$.

Исследования последних десятилетий показывают, что изучение геодинамических процессов и выяснение их причинной обусловленности невозможно без учета роли космических факторов, главными из которых для характерного времени, менее нескольких десятилетий, являются гравитационные поля в системе Солнце–Земля–Луна, а также солнечная активность. Предположение о том, что тектонические процессы вызваны, в конечном счете, космическими причинами, неоднократно высказывали геологи и геофизики. Наиболее хорошо изучено влияние на сейсмичность приливного воздействия гравитационных полей Луны и Солнца и 11-летней солнечной ритмики. Однако связь землетрясений с 22-летним солнечным циклом исследовалась лишь в одной работе [1]. В обзорной работе [8], посвященной выяснению роли космических факторов в геотектонике, делается вывод, что тектонические процессы представляют собой результат действия двух более или менее равноценных факторов – внутренней эволюции Земли и космических воздействий. В работе [14] на основе литературного обзора сделана попытка в схематическом виде синтезировать представления многочисленных исследователей о механизме связи между различными космическими факторами, сейсмическими и вулканическим процессами с учетом промежуточных звеньев этой взаимосвязи.

Известно, что спектры космических факторов представлены широким набором строго периодических и квазипериодических компонент. С точки зрения долгосрочного прогноза времени возникновения сильных землетрясений и извержений вулканов представляет интерес изучение участков спектра в интервале периодов от года до нескольких десятков лет. Этому интервалу соответствуют 11-летняя, 22-летняя и 80-90летняя периодичности солнечной активности [4]. Не менее известен и лунный прилив с периодом Т=18.613 г., связанный с долгопериодическим вращением узлов лунной орбиты. Выявление статистически значимых фазовых интервалов для наиболее сильных землетрясений при наличии достаточно длительных рядов наблюдений дает возможность осуществлять их долгосрочный прогноз [3, 6, 9-13, 15, 16 и др.]. Новизна настоящей работы связана, во-первых, с тем, что впервые для временных рядов длительностью более ста лет исследуется связь сильных землетрясений с 22-летним солнечным циклом, вовторых, на основе разработанной методики проведен совместный анализ связи землетрясений различных регионов Земли с 19-летним лунным и 22-летним Хэйловским циклом смены полярности ведущих групп солнечных пятен. Основная цель исследования состоит в составлении долгосрочного прогноза наиболее сильных землетрясений и оценке его эффективности для различных регионов Тихоокеанского сейсмического пояса.

Исходные данные и используемые параметры

В работе исследуется зависимость распределения моментов возникновения наиболее сильных землетрясений в семи регионах Тихоокеанского сейсмического пояса от фазы двух долгопериодических циклов: приливного лунного с периодом T_1 =18.613 года и солнечного Хэйловского со средним за последние три века значением периода T_2 =21.8 года. Длительность лунного цикла T_1 в современную эпоху практически не меняется. При расчете фазы лунного цикла условно принято, что ее нулевые значения

Рис.1. Схема расположения исследуемых регионов Тихоокеанского сейсмического пояса: I – Камчатка, II – Курильские острова, III – Япония, IV – Алеутские острова, V – Филиппинские острова, VI – о. Новая Гвинея, VII – о-ва Новые Гебриды.

соответствуют эпохам максимального склонения Луны [14]. В отличие от лунного цикла, длительность так называемого 22летнего солнечного Хэйловского цикла нерегулярно меняется в довольно широких пределах. Первые предположения 0 существовании 22-летнего цикла солнечных пятен были сделаны в конце 19-го века Вольфом, но лишь после открытия в 1913 г. Хэйлом закона изменения полярности магнитных характеристик Солнца, реальность выделения этого цикла получила надежное физическое обоснование [4].

Длительность Хэйловских циклов характеризуется большей устойчивостью. если за их начало брать фазы минимумов четных 11-летних циклов [4], что нами и сделано при дальнейших расчетах. Эпохи минимумов циклов Хэйла взяты по данным (ftp://ftp.ngdc.noaa.gov/STP/SOLAR_DATA/S UNSPOT_NUMBERS/). Для удобства дальнейшей работы Хэйловским циклам нами присвоены порядковые номера №№ 1, 2, 3, 4, ..., 14, начиная с цикла, начавшегося в эпоху 1723.5 г. Очередная эпоха минимума

14-го цикла Хэйла должна предположительно наступить во втором полугодии 2007 г. (http://sidc.oma.be/html/sidc_graphics.html.).

Приведем данные об использовавшихся каталогах землетрясений для семи регионов Тихоокеанского сейсмического пояса: Камчатка, Курильские острова, Япония, Алеутские острова, Филиппинские острова, о. Новая Гвинея и о-ва Новые Гебриды. Для всех регионов, кроме Камчатки, выборка землетрясений проводилась из каталога Significant Worldwide Earthquakes (NOAA), который содержит события с 2150 г. до н.э. по 1994 г. Выборки дополнялись событиями из каталога USGS/NEIC (PDE), включающего события с 1973 г. по настоящее время (<u>http://neic.usgs.gov/neis/epic/epic rect.html</u>). Предполагается, что за последние 130 лет каталог является достаточно представительным для всех регионов для событий с магнитудой $M \ge 7.5$. Регионы представлены на рис.1.

Для камчатского региона за основу взят каталог сильных землетрясений Камчатки в шкале моментных магнитуд с 1737 года по данным [5, 7]. Каталог включает 25 событий [17]. Для всех семи регионов общее число анализировавшихся землетрясений равно 175.

Методика анализа данных и результаты

Для выявления связи землетрясений с космическими факторами в [17] предложена

Рис.2. Распределение камчатских землетрясений в зависимости от фаз лунного и Хэйловского циклов за период 1737-2007 г.г. Светлые кружки соответствуют землетрясениям с M = 7.5, черные кружки – событиям с M ≥ 7.6. Наклонными линиями показаны фазовые траектории, номера которых идентичны номерам Хэйловских циклов. Жирной пунктирной линией показан гипотетический Хэйловский цикл № 14. Для событий с M ≥ 7.6 одинарной штриховкой выделены "опасные фазовые окна". соответствующие региональному сейсмическому отклику, двойной штриховкой выделен "опасный" фазовый интервал, соответствующий планетарному сейсмическому отклику. Пояснения в тексте.

методика, основанная на следующем. Во-первых, для каждого землетрясения рассчитываются значения фазы Ф₁ лунного прилива Т₁ и фазы Ф₂ Хэйловского цикла Т₂. Во-вторых, на двумерной фазовой плоскости (Ф1, Ф2) строятся фазовые траектории, с целью привязки к ним сейсмических событий. обозначенных нами в виде (рис. кружков 3). 2, Bтретьих, исследуются особенности двумерного распределения моментов возникновения землетрясений на фазовой плоскости (Ф1, Φ_{2}). Охарактеризуем методический подход на примере Камчатки.

Распределение 25 землетрясений Камчатки на фазовой плоскости (Ф1, Ф2) приведено на рис. 2. Здесь же прямых В виде линий проведены фазовые траектории, номера которых соответствуют номерам 22летних циклов. Каждая траектория начинается С нулевой фазы цикла Хэйла и заканчивается нулевой фазой следующего по времени За 280 предыдущих цикла. плоскость лет фазовая траекториями заполнена

почти равномерно. В этом случае можно предположить, что при случайном возникновении землетрясений они распределятся на фазовой плоскости достаточно равномерно. Далее анализ распределения на фазовой плоскости (Φ_1 , Φ_2) проводится по "методу фазовых траекторий" (МФТ), более полно описанному в [17].

Как было показано ранее [6, 15, 18], наиболее сильные камчатские землетрясения с $M \ge 7.6$, эпицентры которых расположены южнее 57.0° с.ш., приурочены к двум узким интервалам фаз лунного прилива 18.613 г. с длительностью фазовых интервалов около двух лет. Это отчетливо видно на рис. 2, где все 14 событий с $M \ge 7.6$, обозначенные черными кружками, произошли в двух фазовых окнах ($\Phi_1 = 0.12-0.24$ и $\Phi_1 = 0.47-0.58$) длительностью 2.23 и 2.05 года. Гипотеза о равномерности распределения землетрясений в пределах лунного цикла по биномиальному критерию отвергается с уровнем доверия более 0.99 [2]. Землетрясения с M = 7.5, обозначенные светлыми кружками, этой статистически значимой закономерности не подчиняются. С уровнем доверия более 0.95 отвергается также гипотеза о равномерном распределении событий с $M \ge 7.6$ по фазам Хэйловского цикла. 12 землетрясений из 14 приурочены к интервалу фаз $\Phi_2 = 0.31-0.73$.

Распределение событий с $M \ge 7.6$ на фазовой плоскости является неравномерным (рис.2). Выделяются две области пересечения одной активной фазы Хэйловского цикла с двумя активными фазами лунного цикла. Эти два "опасных окна" заштрихованы. Гипотеза о равномерном распределении событий с $M \ge 7.6$ на фазовой плоскости отвергается с уровнем доверия более 0.99. Таким образом, для камчатских землетрясений с $M \ge 7.6$ за почти 300 лет наблюдений сейсмический отклик на изменения фаз двух космических ритмов оказался в определенном смысле детерминированным. Расчёты показывают, что в "опасных окнах" вероятность возникновения землетрясений на 2 порядка выше, чем вне этих окон.

Об "опасной" фазе цикла Хэйла для Тихоокеанского сейсмического пояса

При анализе всей совокупности данных для исследуемых регионов Тихоокеанского сейсмического пояса обнаружено, что в окрестности минимумов 22-летних циклов в фазовом окне $\Phi_2 = 0.90-1.0-0.10$, симметричном относительно эпох минимумов, с уровнем доверия более 0.95 выделяется статистически значимый фазовый интервал $\Phi_2 = 0.95 - 0.01$ длительностью в среднем 16 месяцев. В этом узком "опасном" интервале, занимающем около 33% общей площади рассматриваемого фазового окна, отмечено 24 "главных" землетрясений из 33. К "главным" событиям будем относить землетрясения соответствующих магнитуд, по которым выделяются "опасные окна". Эффективность прогноза землетрясений для выделенного Хэйловского интервала составляет I = (24/33)/0.33 = 2.2.

В работе [17] сделан вывод, что выявленный эффект имеет планетарную природу, поэтому в указанном интервале значимо повышена вероятность возникновения землетрясений $M \ge 7.6$ в Тихоокеанском сейсмическом поясе. Если принять, что эпоха минимума следующего цикла начнется в середине второго полугодия 2007 г. (<u>http://sidc.oma.be/html/sidc_graphics.html.</u>), то в интервале октябрь 2006–январь 2008 гг. в Тихоокеанском поясе можно было ожидать 2-6 землетрясений с $M \ge 7.6$. В соответствии со сделанной в 2006 г. оценкой [17], произошли землетрясения с $M \ge 8.1 - 8.3$ в ноябре 2006 и январе 2007 г. на Курильских островах и в апреле 2007 г. на Соломоновых островах.

Рассчитаем эффективность I предложенной методики прогноза для каждого из семи регионов по ретроспективным данным. Величина I равна отношению доли (D_{npor}) соответствующих прогнозу "главных" землетрясений (N_{npor}) от их общего количества N к доле (S_{onac}) площади "опасных" окон и "опасных" фазовых интервалов в цикле Хэйла относительно принятой за единицу общей площади фазового квадрата (Φ_1 , Φ_2). Исходные данные для оценок I приведены в таблице 1. Согласно расчетам, величина D_{npor} меняется от 78% (о-ва Новые Гебриды) до 100% (Камчатка). Величина I = D_{npor}/S_{onac} меняется от 2.0 (Алеутские о-ва) до 5.9 (Камчатка).

На основе рис. 2 и 3 достаточно просто диагностируются интервалы времени, соответствующие трассам прохождения фазовых траекторий через "опасные" окна и фазовые интервалы. Если принять, что эпоха минимума следующего цикла начнется в середине второго полугодия 2007 г., а длительность цикла Хэйла №14 составит ~21 год (среднее значение за последние 100 лет), можно рассчитать временные интервалы, в которых ожидаются "главные" землетрясения для каждого региона. Возможные ошибки определения границ "опасных" интервалов времени в 80% случаев не превысят шесть месяцев. Долгосрочный прогноз времени возникновения "главных" землетрясений в каждом из регионов на период 2007- 2027 г.г. представлен в таблице 2. После того, как станет известно реальное время эпохи минимума Хэйловского цикла № 14, прогностические оценки должны быть скорректированы. На основании данных таблицы 2 следует, что в ближайшие 20 лет в рассматриваемых регионах длительность "опасных" интервалов в различных регионах меняется от 3.6 лет для Камчатки до 8.8 лет для Филиппинских островов.

Рис.3. Распределение сейсмических событий в зависимости от фаз лунного и Хэйловского циклов: а) для Алеутских островов за период 1849 - 2006 гг.; б) для Курильских островов за период 1780 -2007 гг.; в) для Японии за период 1894 - 2006 гг.; г) для Филиппинских островов за период 1897-2002 гг.; д) для о. Новая Гвинея за период 1899-2004 гг.; е) для о-вов Новые Гебриды за период 1900-2002 гг. Светлые кружки - события с M = 7.5, темные кружки – события с $M \ge 7.6$ (для Японии M ≥ 7.9, для Филиппин M ≥ 7.8). Наклонными линиями показаны фазовые траектории, номера которых идентичны номерам Хэйловских циклов. Жирной пунктирной линией показан гипотетический Хэйловский цикл № 14. Для событий с М ≥ 7.6 одинарной штриховкой выделены "опасные фазовые окна", соответствующие региональному сейсмическому отклику, двойной "опасный" планетарному штриховкой выделен фазовый интервал, соответствующий сейсмическому отклику. Пояснения в тексте.

Регион	Характеристика выборки землетрясений		Число	Число спрогнози-	Площадь "опасных"	Эффективность
	Магнитуда	Период наблюдений, годы	землетря- сений, N	рованных землетря- сений, N ₁	окон и фазовых интервалов, S _{опас}	прогноза, I=(N ₁ /N)/S _{onac}
Камчатка	$M_W \ge 7.6$	1737-2006	14	14	0.17	5.9
Курильские острова	$M \ge 7.6$	1780-2006	20	19	0.35	2.7
Япония	$M \ge 7.9$	1894-2006	20	17	0.28	3.0
Алеутские острова	$M \ge \! 7.6$	1849-2006	21	18	0.43	2.0
Филиппинские острова	$M\geq\!7.8$	1897-2002	17	16	0.35	2.7
о. Новая Гвинея	$M \ge 7.6$	1899-2004	14	12	0.22	3.9
о-ва Новые Гебриды	M ≥7.6	1900-2002	18	14	0.25	3.1

Таблица 1. Оце	енка эффективности	I прогноза з	землетрясений по	"методу	фазовых
траекторий" для семи	регионов Тихоокеано	ского сейсми	ического пояса		

Таблица 2. Долгосрочный прогноз времени и магнитуды землетрясений для семи регионов Тихоокеанского сейсмического пояса на ближайшие 20 лет (01.2007 – 12.2026 г.г.)

Ратион	Параметры прогноза				
гсійон	Магнитуда	Глубина, км	Временной интервал		
Камчатка, Япония, Алеутские, Курильские и Филиппинские острова, о. Новая Гвинея, о-ва Новые Гебриды	М ≥ 7.6 (Япония - М ≥ 7.9), (Филиппины - М ≥ 7.8)	0-100	I.2007 – I.2008		
Камчатка	$M_W \ge 7.6$	0-100	XI.2014 - VII.2017		
Курильские острова	$M \ge 7.6$	0-100	V.2012 - V.2015		
Япония	$M \ge 7.9$	0-100	X.2007 – III.2010; VII.2024 – X.2028		
Алеутские острова	$M \ge 7.6$	0-100	XII.2012 – IV.2014; XII.2020 – VII.2023		
Филиппинские острова	$M \ge 7.8$	0-100	II.2008 – VIII.2011; VII.2015 – X.2017; IX.2026 – X.2028		
о. Новая Гвинея	$M \ge 7.6$	0-100	VIII.2011 – X.2012; III.2020 – VIII.2022		
о-ва Новые Гебриды	$M \ge 7.6$	0-100	VI.2014 - V.2018		

Примечание. В период XII.2006 – I.2008 гг. ожидается от двух до шести землетрясений. На Камчатке вероятность возникновения землетрясений в этот период практически равна нулю.

Прогноз составлен в предположении, что эпоха минимума очередного цикла Хэйла № 14 соответствует середине второй половины 2007 г. Если эта оценка изменится, прогноз будет скорректирован.

Выводы

Разработана методика долгосрочного прогноза землетрясений, основанная на совместном анализе влияния на сейсмичность 22-летних солнечных циклов Хэйла и лунного прилива с периодом 18.613 г. по данным наблюдений за 1737 – 2006 г.г.

Для семи регионов Тихоокеанского сейсмического пояса дан прогноз сильных землетрясений с М≥7.6 на период 2007-2016 г.г., и сделаны оценки его эффективности по ретроспективным данным.

Работа выполнена в рамках гранта ДВО РАН 06 III А-08-336.

Список литературы

- Барляева Т.В., Морозова А.Л., Пудовкин М.И. Влияние космических факторов на развитие землетрясений // Геофизические методы исследований Земли и недр. Материалы Международной научно-практической конференции молодых ученых и специалистов "Геофизика-99", Санкт-Петербург, 9-12 ноября 1999 г. М. 2000. С. 8-19.
- 2. Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1965. 464 с.
- 3. Бузевич А.В. Солнечная активность и сейсмичность на Камчатке // Сборник докладов III международной конференции "Солнечно-земные связи и электромагнитные предвестники землетрясений", с. Паратунка, 16-21 августа 2004 г. (http://www.kcs.iks.ru/ikir).
- 4. Витинский Ю.И. Цикличность и прогнозы солнечной активности. Л.: 1973. 257 с.
- 5. Гусев А.А. Схема очаговых зон сильных землетрясений Камчатки за инструментальный период // Комплексные сейсмологические и геофизические исследования Камчатки. Петропавловск-Камчатский. 2004. С. 75-80.
- 6. Гусев А.А., Петухин А.Г. О возможной синхронизации сильных землетрясений лунным 18.6-летним циклом, его долями и кратными // Вулканология и сейсмология. 1997. № 3. С. 64-79.

- 7. Гусев А.А., Шумилина Л.С. Повторяемость сильных землетрясений Камчатки в шкале моментных магнитуд // Физика Земли. 2004. № 3. С. 34-42.
- 8. Кропоткин П.Н. Возможная роль космических факторов в геотектонике // Геотектоника. 1970. № 2. С. 30-76.
- 9. Ламакин В.В. О периодичности байкальских землетрясений // ДАН СССР. 1966. Т. 170. № 2. С. 210-213.
- Серафимова Ю.К. О связи сильных (М_W ≥ 7.5) землетрясений Камчатки с солнечной активностью // Геофизический мониторинг Камчатки. Материалы научно-технической конференции 17-18 января 2006 г., г. Петропавловск-Камчатский. Петропавловск-Камчатский: "Оттиск", 2006. С. 171-177.
- 11. Сытинский А.Д. О зависимости глобальной и региональной сейсмичности Земли от фазы 11-летнего цикла солнечной активности // Докл. АН СССР. 1982. Т. 265. № 6. С. 1350-1353.
- 12. Сытинский А.Д. О связи землетрясений с солнечной активностью // Физика Земли. 1989. № 2. С. 13-30.
- Сытинский А.Д. О связи землетрясений с солнечной активностью // Физика Земли. 1991. № 3. С. 110-112.
- 14. Широков В.А. Влияние космических факторов на геодинамическую обстановку и ее долгосрочный прогноз для северо-западной части Тихоокеанской тектонической зоны // Вулканизм и геодинамика. – М.: Наука, 1977. С. 103-115.
- 15. Широков В.А. Влияние 19-летнего лунного прилива на возникновение больших камчатских извержений и землетрясений и их долгосрочный прогноз // Геологические и геофизические данные о Большом Трещинном Толбачинском извержении 1975-1976 гг. – М.: Наука, 1978. С. 164-170.
- 16. Широков В.А. Опыт краткосрочного прогноза времени, места и силы камчатских землетрясений 1996-2000 гг. с магнитудой М = 6-7.8 по комплексу сейсмологических данных // Геодинамика и вулканизм Курило-Камчатской островодужной системы. – Петропавловск-Камчатский. 2001. С. 95-116.
- Широков В.А, Серафимова Ю.К. О связи 19-летнего лунного и 22-летнего солнечного циклов с сильными землетрясениями и долгосрочный сейсмический прогноз для северозападной части Тихоокеанского пояса // Вестник КРАУНЦ. Науки о Земле. 2006. №2. Вып. №8. С. 120-133.
- 18. Широков В.А., Широкова Н.В. О проблемах сейсмического риска и краткосрочного прогноза сильных землетрясений Камчатки // Вопросы географии Камчатки. 2005. № 11. С. 44-55.