ЭЛЕКТРОДИНАМИКА И РАСПРОСТРАНЕНИЕ РАДИОВОЛН

УДК 537.87:517

НЕСТАЦИОНАРНЫЕ ОТРАЖЕНИЯ ВОЛН В СРЕДАХ С ФРАКТАЛЬНОЙ ДИСПЕРСИЕЙ

© 2014 г. А. С. Пережогин, Б. М. Шевцов

Институт космофизических исследований и распространения радиоволн ДВО РАН Российская Федерация, 684034, Камчатский край, п. Паратунка, ул. Мирная, 7 *E-mail: alexeyperezhogin@gmail.com* Поступила в редакцию 24.11.2012 г.

Получены численные и аналитические решения задачи отражения волн в одномерной однородной среде с частотной фрактальной дисперсией на основе метода инвариантного погружения с учетом эффектов многократного рассеяния и долговременной памяти. В качестве характеристик среды использованы решения уравнений дробного релаксатора и осциллятора. Рассмотрены особенности отражений при различных фрактальных свойствах дисперсии. Обсуждаются возможности применния полученных решений в диагностике диэлектриков, плазмы и упругих тел.

DOI: 10.7868/S0033849414010100

ВВЕДЕНИЕ

В связи с необходимостью развития методов дистанционного зондирования сред с фрактальными свойствами [1] представляет интерес получить решения волновой задачи нестационарных отражений с учетом многократного рассеяния и эффектов памяти. Эти решения могут найти применение в диагностике нелокальных процессов в диэлектриках, плазме и упругих телах.

Получить решение нестационарной задачи отражения с учетом процессов многократного рассеяния волн и реакции среды можно с помощью метода инвариантного погружения [2, 3], а для представлений отклика среды можно воспользоваться моделями степенной релаксации [4—6] или дробных осцилляций [6—8]. Ниже будут рассматриваться отражения электромагнитных волн, однако полученные решения могут быть без особых изменений использованы и в акустике фрактальных сред.

В случае достаточной протяженности среды будут сказываться одновременно эффекты медленной степенной релаксации и многократного рассеяния. Исследованию специфики возникающих при этом отражений, представляющих интерес для развития методов дистанционного зондирования, и посвящена данная работа.

1. ВОЛНЫ В ОДНОМЕРНЫХ ОДНОРОДНЫХ СРЕДАХ С ДИСПЕРСИЕЙ

А. Задача отражения

В одномерном случае уравнения Максвелла для электрических $E_x = E(z,t)$ и магнитных $H_y = H(z,t)$

компонент полей с учетом временной дисперсии будут иметь вид [5]:

$$\frac{\partial}{\partial z}H(z,t) = -\varepsilon_0 \frac{\partial}{\partial t} \left(E(z,t) + \kappa(z) \int_{-\infty}^{\infty} f(t-\xi)E(z,\xi)d\xi \right),$$
(1)
$$\frac{\partial}{\partial z}E(z,t) = -\mu_0 \frac{\partial}{\partial t}H(z,t),$$

где ε_0 и μ_0 – диэлектрическая и магнитная проницаемость вакуума, $\kappa(z)$ – относительная диэлектрическая восприимчивость среды, f(t) – характеристическая функция среды, форма ее отклика от воздействия дельта-импульсом электрического поля. При большой толщине слоя начинают сказываться эффекты многократного рассеяния, которые проявляются в том, что отраженный средою сигнал отличается от f(t).

В случае среды без дисперсии характеристическая функция принимает вид дельта-функции $f(t) \rightarrow \delta(t)$, а электрическая индукция $D \rightarrow \varepsilon(1 + \kappa(z))E = \varepsilon_0\varepsilon(z)E$, где $\varepsilon(z) = 1 + \kappa(z)$ – относительная диэлектрическая проницаемость среды. Для упрощения магнитные дисперсионные эффекты не учитываются.

Рассмотрим задачу о падении волны справа на слой однородной среды, расположенный в области пространства 0 < z < L. Для коэффициента отражения монохроматической волны от слоя $R(\tau, \omega)$ можно получить уравнение Риккати [3]

$$\frac{\partial}{\partial \tau} R(\tau, \omega) = -\frac{i\omega}{2} (\kappa(\tau) f(\omega)) (R(\tau, \omega) + 1)^2 - 2i\omega R(\tau, \omega). (2)$$

Обратное преобразование Фурье $R(\tau, \omega)$ — волна $R(\tau, t)$, отраженная от слоя среды в случае падающего дельта-импульса, которая называется ядром оператора рассеяния назад. Уравнение для $R(\tau, t)$ можно получить из (2).

Если в нем перейти к удвоенному времени прохода $\chi(z) = 2\tau(z)$ и сделать подстановки $R(\chi, t) = = \theta(t)\tilde{R}(\chi, t)$ и $f(t) = \theta(t)\tilde{f}(t)$ ($\theta(t)$ – тета-функция), то для величины $\tilde{R}(\chi, t)$ найдем уравнение

$$\left(\frac{\partial}{\partial\chi} + \frac{\partial}{\partial t}\right)\tilde{R}(\chi, t) = -\frac{\kappa(\chi)}{4} [\tilde{f}(0)\int_{0}^{t} \tilde{R}(\chi, t-\xi)\tilde{R}(\chi, \xi)d\xi + \int_{0}^{t} \tilde{f}'(t-\xi)\int_{0}^{\xi} \tilde{R}(\chi, \xi-\eta)\tilde{R}(\chi, \eta)d\eta d\xi + (3) + 2\tilde{f}(0)\tilde{R}(\chi, t) + 2\int_{0}^{t} \tilde{f}'(t-\xi)\tilde{R}(\chi, \xi)d\xi + \tilde{f}'(t)]$$

с граничным условием $\tilde{R}(\chi, 0) = -\frac{\kappa(\chi)}{4}\tilde{f}(0).$

Если $f(t) \rightarrow \delta(t)$, что соответствует исчезновению эффектов памяти, то в случае однородного слоя, в котором $\kappa = \text{const} \neq 0$, правая часть уравнения (3) не стремится к нулю, поскольку остаются многократные отражения волны от границ слоя. Такие отражения не представляют интереса и могут быть исключены из рассмотрения с помощью формул Френеля [3].

Б. Случай отражения от полупространства

В задаче отражения от однородного слоя, в котором $\kappa(\tau) = \text{const}$, можно выполнить переход к полупространству, предполагая, что существует решение уравнения (2), стационарное по τ . Приравняв в (2) нулю значение $\frac{\partial}{\partial \tau} R(\tau, \omega)$, получим уравнение для коэффициента отражения $R(\omega)$, решение которого будет иметь вид:

$$R(\omega) = \frac{-i\omega(\kappa f(\omega) + 2) \pm 2\sqrt{-\omega^2(\kappa f(\omega) + 1)}}{i\omega\kappa f(\omega)}.$$
 (4)

Затухающему отражению соответствует знак плюс. Волна R(t) – ядро оператора рассеяния назад от полупространства – будет рассмотрено ниже.

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 59 № 1 2014

В. Численная схема решения задачи отражения

Численную схему для уравнения (3) с граничным условием можно записать следующим образом:

n-1

$$\frac{\tilde{R}(\chi_{n},t_{i})-\tilde{R}(\chi_{n-1},t_{i-1})}{\sqrt{2}\Delta t} = -\frac{\kappa(\chi_{n})}{4} [\tilde{f}(0)\sum_{j=1}^{n-1} \tilde{R}(\chi_{n-1},t_{i+1-j}) \times \\
\times \tilde{R}(\chi_{n-1},t_{j})\Delta t - \sum_{l=1}^{n-1} \tilde{f}^{*}(t_{i+1-l})\sum_{j=1}^{l} \tilde{R}(\chi_{n-1},t_{l+1-j}) \times \\
\times \tilde{R}(\chi_{n-1},t_{j})\Delta t^{2} - \tilde{f}(0)\tilde{R}(\chi_{n-1},t_{i-1}) - \\
- \sum_{i=1}^{n-1} \tilde{f}^{*}(t_{i+1-j})\tilde{R}(\chi_{n-1},t_{j})\Delta t - \tilde{f}^{*}(t_{i-1})],$$
(5)

где $\tilde{R}(\chi_n, 0) = -\frac{\kappa(\chi_n)}{4}\tilde{f}(0), i = 1, 2, ..., n, \Delta t$ – шаг по χ

или *t* (их совпадение следует из равенства единице скорости переноса), n = 1, 2, ..., N, $N - число шагов в слое. Результатом расчета данной схемы будет треугольная матрица <math>\tilde{R}(\chi_n, t_i)$ ($i \le n$), последний столбец которой n = N и будет искомым отражением среды при падении на нее дельта-импульса.

2. МОДЕЛИ СРЕДЫ С ДРОБНОЙ ЧАСТОТНОЙ ДИСПЕРСИЕЙ

Начнем с известной релаксационной модели Коула–Коула для диэлектриков [4-6]:

$$1 + \tau_0^{\alpha} D_{0t}^{\alpha}) P(t) = \kappa E(t), \qquad (6)$$

где $D_{0t}^{\alpha}[g(\xi)] = \frac{1}{\Gamma(1-\alpha)} \frac{d}{dt} \int_{0}^{t} \frac{g(\xi)d\xi}{(t-\xi)^{\alpha}}$ – оператор дробного дифференцирования, $0 < \alpha < 1$, $\Gamma(x)$ – гаммафункция, κ – относительная диэлектрическая восприимчивость, P(t) – поляризация, E(t) – напряженность электрического поля, τ_0 – временной масштаб, который только в случае $\alpha = 1$ (экспоненциальной релаксации Дебая) приобретает смысл времени релаксации. Если $0 < \alpha < 1$, то решением (6) будет степенная релаксация, для ко-

торой понятие среднего времени релаксации не

определено, поскольку его вычисление приводит

к расходимости интеграла.

Подстановкой $P(t) = \kappa (1 + \tau_0^{\alpha} D_{0t}^{\alpha})^{-1} E(t)$ в (1) получаем волновое уравнение для среды с релаксацией. В предельных случаях ее отсутствия ($\tau_0 \to \infty$ или $\alpha \to 0$), соответствующих невосприимчивому диэлектрику, различия в результатах не возникают, если τ_0 поменять на $\hat{\tau}_0 = \tau_0 / \alpha$, что согласуется с определением фрактала, которое связано с понятием сжимающего отображения временного интервала Δt на себя, при этом α является параметром сжатия, а кратность отображения определяет масштабный интервал.

Рис. 1. Рост поляризации после включения электрического поля в модели Коула–Коула при $\alpha = 1.0$ (*1*), 0.9 (*2*), 0.8 (*3*), 0.7 (*4*), 0.6 (*5*), 0.5 (*6*), 0.4 (*7*).

Рассмотрим возможность дробной релаксации в плазме. Для описания усредненного движения электрона во внешнем электрическом поле с учетом эффектов аномальной релаксации можно воспользоваться уравнением [6–8]:

$$\ddot{P}(t) + \left(\frac{1-\alpha}{\tau_{\alpha}}\right)^{1-\alpha} \frac{1}{\Gamma(1-\alpha)} \frac{d^2}{dt^2} \int_{0}^{t} \frac{P(\xi)d\xi}{(t-\xi)^{\alpha}} = \omega_p^2 E(t), \quad (6a)$$

где ω_p — плазменная частота, α — показатель дробности, $0 < \alpha < 1$, $\tau_{\alpha}/(1-\alpha)$ — нормированный временной масштаб. Относительно $\dot{P}(t)$ (6а) — обобщенное уравнение Ланжевена, которое при $\alpha = 0$ переходит в обычное. Случай $\tau_{\alpha} \to \infty$ или $\alpha \to 1$ соответствует плазме без столкновений.

Для описания аномальных колебаний электрона, которые могут быть обусловлены фрактальными флуктуациями его связи с атомом, можно воспользоваться уравнением дробного осциллятора [6–8]:

$$\ddot{P}(t) + \left(\frac{1-\beta}{\tau_{\beta}}\right)^{2-\beta} \frac{1}{\Gamma(1-\beta)} \frac{d}{dt} \int_{0}^{t} \frac{P(\xi)d\xi}{(t-\xi)^{\beta}} = \omega_{p}^{2} E(t), \quad (66)$$

где β — фрактальный параметр, $0 < \beta < 1$, $\tau_{\beta}/(1 - \beta)$ — нормированный временной масштаб, соответственно ему $\hat{v}_{\beta} = (1 - \beta)/\tau_{\beta}$ — частота релаксационных дробных колебаний.

Параметры α , $\tau_{\alpha}/(1-\alpha)$ и β , $\tau_{\beta}/(1-\beta)$ являются характеристиками двух дробных релаксационных процессов различного целого порядка. Если оба процесса дают вклад в отклик среды, то их необ-ходимо одновременно учитывать в уравнении для поляризации среды.

Статистической моделью аномальной релаксации для всех рассмотренных выше случаев может служить дробный пуассоновский процесс [9–10].

3. ПОЛЯРИЗАЦИЯ СРЕДЫ

Решением (6) в области t > 0, если $E(t) = \theta(t)$, где $\theta(t)$ – тета-функция, будет [4]

$$P(t)\big|_{E(t)=\theta(t)} = \kappa \left(\frac{t}{\hat{\tau}_0}\right)^{\alpha} E_{1/\alpha} \left(-\left(\frac{t}{\hat{\tau}_0}\right)^{\alpha}; 1+\alpha\right), \qquad (7)$$

где $E_{1/\alpha}(z;\mu) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha n + \mu)} - функция типа$

Миттаг—Леффлера, $\hat{\tau}_0 = \tau_0 / \alpha$.

Это решение с ростом *t* стремится к единице, экспоненциально в случае $\alpha = 1$ и степенным образом, если $0 < \alpha < 1$ (рис. 1).

Характер решения, представленного на рис. 1, говорит о том, что модель Коула–Коула (6) на самом деле описывает возбуждение поляризации в диэлектрике, который оказывает сопротивление воздействию на него тэта-импульсом. Поэтому закрепленное за этой моделью название релаксатора не совсем оправданно. При уменьшении α сопротивление воздействию на больших временах возрастает, а на малых масштабах убывает. В частотном представлении, разумеется, все наоборот.

Фундаментальное решение или функция Грина оператора в левой части (6) получается дифференцированием выражения (7), которое для значений t > 0 дает [11]

$$P(t)\big|_{E(t)=\delta(t)} = \kappa \frac{1}{\hat{\tau}_0} \left(\frac{t}{\hat{\tau}_0}\right)^{\alpha-1} E_{1/\alpha} \left(-\left(\frac{t}{\hat{\tau}_0}\right)^{\alpha}, \alpha\right).$$
(8)

На рис. 2 представлено решение (8) при различных значениях параметра дробности α.

Решение (8) имеет степенной характер, его поведение в нуле определяется параметрами среды и в дробном случае сингулярное, этим оно и отличается от релаксации Дебая, $\alpha = 1$.

В предельном случае быстрой релаксации, когда $\tau_0 \to 0$ при любом α , $P(t)|_{E(t)=\theta(t)} \to \kappa \theta(t)$ и $P(t)|_{E(t)=\delta(t)} \to \kappa \delta(t)$. Это приводит к отсутствию дисперсии.

Решения уравнений (6а) и (6б), если $E(t) = \delta(t)$, также определяют поляризацию $P(t)|_{E(t)=\delta(t)} = \kappa f(t)$ в случае отклика среды на воздействие дельта-им-пульсом.

Используя закон композиции операторов дробного дифференцирования, с учетом начального условия P(0) = 0 выполним в (ба) замену переменных $D^{\alpha+1}P(t) = D^{\alpha}\dot{P}(t) = D^{\alpha}V_{P}(t)$, где $V_{P}(t) = \dot{P}(t) -$ скорость изменения поляризации, $0 < \alpha < 1$.

Рис. 2. Поляризация $P(t)|_{E(t)=\delta(t)}$ в модели Коула–Коула при $\alpha = 1.0$ (1), 0.9 (2), 0.8 (3), 0.7 (4), 0.6 (5), 0.5 (6), 0.4 (7).

Запишем уравнение для относительной скорости изменения поляризации $v_P(t) = V_P(t) / \omega_p^2$, полагая в правой части выражения (6a) $E(t) = \delta(t)$:

$$\dot{\mathbf{v}}_P(t) + \left(\frac{1-\alpha}{\tau_\alpha}\right)^{1-\alpha} D_{0t}^{\alpha} \mathbf{v}_P(t) = \delta(t).$$
(9)

Поиск решения данного уравнения с учетом условия $v_p(t) = 0$ при t < 0 сводится в области t > 0 к задаче с начальными данными $v_p(0) = 1$. Найти решение (9) нетрудно с помощью интегрального преобразования.

Лаплас-образ функции $v_P(t)$ можно записать в виде

$$\nu_{P}(p) = \frac{\hat{\tau}_{\alpha}}{\hat{\tau}_{\alpha}p + (\hat{\tau}_{\alpha}p)^{\alpha}} = \frac{\hat{\tau}_{\alpha}}{\hat{\tau}_{\alpha}p(1 + (\hat{\tau}_{\alpha}p)^{\alpha-1})} =$$

= $p^{-1}\sum_{n=0}^{\infty} (-1)^{n} (\hat{\tau}_{\alpha}p)^{(\alpha-1)n} = \sum_{n=0}^{\infty} (-1)^{n} (\hat{\tau}_{\alpha})^{(\alpha-1)n} (p)^{(\alpha-1)n-1},$ (10)

где $\hat{\tau}_{\alpha} = \tau_{\alpha}/(1-\alpha)$ — нормированный масштаб времени.

Согласно (10), оригиналом функции $v_P(p)$ будет

$$\nu_P(t) = \sum_{n=0}^{\infty} \frac{(-1)^n}{\Gamma((1-\alpha)n+1)} \left(\frac{t}{\hat{\tau}_{\alpha}}\right)^{(1-\alpha)n} =$$

= $E_{1/(1-\alpha)} \left(-\left(\frac{t}{\hat{\tau}_{\alpha}}\right)^{1-\alpha}; 1\right).$ (11)

На рис. 3 представлено решение (11) при различных значениях показателя дробности α и $\tau_{\alpha} = 1$.

Согласно рис. 2, на больших временных масштабах дробная релаксация замедляется по отно-

4 РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 59 № 1

Рис. 3. Зависимость $v_P(t)$ в случае дробной релаксации при $\alpha = 0.01$ (*1*), 0.05 (*2*), 0.1 (*3*), 0.15 (*4*), 0.2 (*5*), 0.25 (*6*), 0.3 (*7*).

шению к релаксации Дебая, и это отличие растет с увеличением параметра α. Замедление релаксации на больших временных масштабах означает, что проводимость плазмы на низких частотах возрастает.

Найдем теперь зависимость поляризации от времени при $E(t) = \delta(t)$. Интегрируя выражение (11) для $v_p(t)$ по времени *t* и умножая на ω_p^2 , с учетом начального условия P(0) = 0 получаем решение уравнения (ба) при $E(t) = \delta(t)$:

$$P(t)|_{E(t)=\delta(t)} = \omega_p^2 \int_0^1 v_p(\tau) d\tau =$$

$$= \omega_p^2 \int_0^t E_{1/(1-\alpha)} \left(-\left(\frac{t}{\hat{\tau}_\alpha}\right)^{1-\alpha}; 1\right) d\tau =$$

$$= \omega_p^2 t E_{1/(1-\alpha)} \left(-\left(\frac{t}{\hat{\tau}_\alpha}\right)^{1-\alpha}; 2\right),$$
(12)

где 0 < α < 1.

Это решение при различных значениях показателя дробности α , $\omega_p = 1$ и $\tau_{\alpha} = 1$, представлено на рис. 4.

Сравнение рис. 2 и 4 показывает, что поведение поляризации в моделях (6) и (6а) при одном и том же воздействии существенно отличается, что обусловлено различными восприимчивостями среды.

Аналогично находится решение уравнения (6б):

$$P(t)\big|_{E(t)=\delta(t)} = \omega_p^2 t E_{1/(2-\beta)} \left(-\left(\frac{t}{\hat{\tau}_\beta}\right)^{2-\beta}; 2 \right),$$
(13)

где $0 < \beta < 1$, $\hat{\tau}_{\beta} = \tau_{\beta}/(1-\beta)$.

2014

Рис. 4. Поляризация $P(t)|_{E(t)=\delta(t)}$ в случае дробной релаксации при $\alpha = 0.01$ (1), 0.05 (2), 0.1 (3), 0.15 (4), 0.2 (5), 0.25 (6), 0.3 (7).

На рис. 5 представлено выражение (13) при различных показателях дробности β , $\omega_p = 1$ и $\tau_\beta = 1$. Согласно рисунку, с ростом β релаксация колебаний наступает быстрее, а в пределе $\beta \rightarrow 0$ устанавливаются гармонические колебания.

4. ЧИСЛЕННОЕ МОДЕЛИРОВАНИЕ ОТРАЖЕНИЙ

С помощью численного решения уравнения (3) для ядра оператора рассеяния назад получим отражения в диэлектриках, используя решение (8) в качестве функции отклика среды $\kappa f(t) = P(t)|_{F(t)=\delta(t)}$.

Рис. 5. Поляризация $P(t)|_{E(t)=\delta(t)}$ в случае дробных релаксационных колебаний при $\beta = 0.1$ (*1*), 0.2 (*2*), 0.3 (*3*), 0.4 (*4*), 0.5 (*5*), 0.6 (*6*), 0.7 (*7*).

Отметим, что сингулярность выражения (8) в нуле не создает трудностей с вычислениями. Значение t = 0 просто исключается из рассмотрения, и вычисление начинается на следующем шаге. Найденные отражения при различных значениях α представлены на рис. 6, $\kappa = 1$.

Рассмотрим отражения в плазме. Найдем решение (4) для коэффициента отражения $R(\omega)$ от однородного полупространства среды, которое выражается через спектр характеристической функции $f(\omega)$.

В предельных случаях $\tau \to \infty$ или $\alpha \to 1$, соответствующих бесстолкновительной плазме, в уравнении (ба) релаксационный член обращается в нуль. Тогда выражение (ба) при $E(t) = \delta(t)$ принимает следующий вид: $\ddot{P}(t) = \omega_p^2 \delta(t)$, а его спектральным представлением будет $P(\omega) = -\omega_p^2 / \omega^2$. В результате $\kappa f(\omega) = -\omega_p^2 / \omega^2$. Подставляя это выражение в равенство (4) и вычисляя обратное преобразование Фурье, найдем ядро оператора рассеяния назад для случая плазмы без столкновений:

$$R(t) = \frac{1}{\pi} \frac{\partial}{\partial t} \frac{J_1(\omega_p t)}{t},$$
(14)

где $J_1(x)$ — функция Бесселя. Это выражение можно использовать для тестирования численного алгоритма (5). График (14) приведен на рис. 7.

С помощью численного решения уравнения (3) получим отражения в плазме. В случае дробной релаксации используем решение (12) уравнения (6а) в качестве функции отклика среды $\kappa f(t) = P(t)|_{E(t)=\delta(t)}$. На рис. 8 представлены результаты вычисления отражений в плазме R(t) при $\alpha = 0$

Рис. 6. Отражения *R*(*t*) в диэлектриках при α = 1.0 (*1*), 0.9 (*2*), 0.8 (*3*), 0.7 (*4*), 0.6 (*5*), 0.5 (*6*), 0.4 (*7*).

РАДИОТЕХНИКА И ЭЛЕКТРОНИКА том 59 № 1 2014

Рис. 7. Отражение R(t) в случае бесстолкновительной плазмы.

Рис. 9. Отражения R(t) в случае дробной релаксации в плазме при $\alpha = 0.01$ (1), 0.1 (2), 0.3 (3), 0.5 (4).

(случай релаксации Дебая), $\omega_p = 1$, $v_a = 1/\tau_a = 2$, 1, 0.75, 0.5, 0.25.

При быстрой релаксации, соответствующей большим значениям ее показателя $v_{\alpha} = 1/\tau_{\alpha}$, колебания в отражениях, которые имеют место в случае идеальной плазмы (см. рис. 7), исчезают.

Зафиксируем теперь в решении (12) значения параметров $v_{\alpha} = 1$, $\omega_p = 1$ и построим отражения R(t) при различных значениях показателя дробности $\alpha = 0.01, 0.1, 0.3, 0.5$ (рис. 9).

С ростом а свойства среды приближаются к случаю бесстолкновительной плазмы и в отражениях начинают появляться колебания. Однако их период и затухание, в отличие от случая, пред-

Рис. 8. Отражения R(t) в случае релаксации Дебая в плазме при $v_{\alpha} = 2$ (*1*), 1 (*2*), 0.75 (*3*), 0.5 (*4*), 0.25 (*5*).

Рис. 10. Отражения *R*(*t*) в случае дробных осцилляций при β = 0.31 (*I*), 0.4 (*2*), 0.5 (*3*), 0.6 (*4*), 0.7 (*5*).

ставленного на рис. 8, начинают зависеть от параметра α .

Для моделирования отражений в случае аномальных колебаний в среде будем использовать решение (13) уравнения (6б). На рис. 10 приведены результаты вычисления R(t) с параметрами $\tau_{\beta} = 1, \omega_p = 1, \beta = 0.3, 0.4, 0.5, 0.6, 0.7.$

Форма отражений при дробных релаксационных колебаниях в среде также имеет особенности, отличные от случая обычных релаксационных колебаний. Это проявляется в том, что период и затухание дробных колебаний зависят от параметра β.

Отражения R(t) можно использовать в целях дистанционной диагностики неоднородных фрак-

4*

тальных сред. Пространственное распределение параметра к(χ) нетрудно восстановить, применяя метод послойного "раздевания" [3] и линейную аппроксимацию сигнала $\tilde{R}(\chi, t) = -\kappa(\chi)\tilde{f}(t)/4$ вблизи значения времени t = 0, при условии, что f(t) – известная функция.

В случае зондирующего импульса произвольной формы E(t) отраженный сигнал имеет вид

$$U(t) = \int_{0}^{t} d\tau R(t-\tau) E(\tau),$$

поэтому сначала по измеренному сигналу U(t) и заданному исходному импульсу E(t) находится R(t), а затем восстанавливается пространственное распределение параметра $\kappa(\gamma)$.

При этом характер отражений будет зависеть не только от параметров среды, диэлектрической восприимчивости и временного масштаба релаксации, но и от формы зондирующего импульса.

Рассмотренная выше теория отражений с точностью до обозначений может быть использована и в акустике вязкоупругих фрактальных сред. При этом модель (ба) будет соответствовать вязким, а модель (бб) — хрупким релаксационным процессам с долговременной памятью. В зависимости от соотношения между ними по сигналу рассеяния назад можно определить, что преобладает в пластических деформациях — крип или разрушение. Данный активный метод позволяет наблюдать одновременно оба процесса, в то время как метод акустической эмиссии — только процесс разрушения.

ЗАКЛЮЧЕНИЕ

Методы акустической диагностики вязкоупругих релаксационных фрактальных процессов могут найти применение в материаловедении и сейсмологии при дистанционных исследованиях формирования критических состояний среды, в непосредственной близости к которым фрактальные эффекты и проявляются. Они могут служить предвестниками сейсмической опасности или потери устойчивости сооружений. Полученные выше решения можно использовать в волновых экспериментах по модификации состояния диэлектриков, плазмы и твердых тел и обнаружению в них при этом формирования фрактальных структур, например, таких как кластеры каналов электрического пробоя, шаровые молнии или очаги разрушений.

Использованный метод нахождения нестационарных волновых отражений позволяет учесть пространственную дисперсию и нелинейные эффекты, а также найти решения в случае многомерных сред.

Работа выполнена в соответствии с программами Отделения физических наук Российской академии наук при финансовой поддержке Президиума ДВО РАН (проекты № 12-I-ОФН-15, № 12-I-ОФН-16 и № 12-I-ОФН-17.

СПИСОК ЛИТЕРАТУРЫ

- 1. Потапов А.А. Фракталы в радиофизике и радиолокации. М.: Логос, 2002.
- Кляцкин В.И. Стохастические уравнения: теория и ее приложения к акустике, гидродинамике и радиофизике. В 2-х т. Т. 1. Основные положения, точные результаты и асимптотические приближения. М.: Физматлит, 2008.
- 3. Шевцов Б.М. Нестационарные отражения в случайных и хаотических средах. М.: Наука, 2008.
- Novikov V.V., Privalko V.P. // Phys. Rev. E. 2001. V. 64. № 3. P. 031504.
- 5. Нигматуллин Р.Р., Рябов Я.Е. // ФТТ. 1997. Т. 39. № 1. С. 101.
- 6. *Учайкин В.В.* Метод дробных производных. Ульяновск: Артишок, 2008.
- 7. Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987.
- Нахушев А.М. Дробное исчисление и его применение. М.: Физматлит, 2003.
- 9. *Laskin N.* // Commun. in Nonlinear Sci. and Numerical Simulation. 2003. V. 8. № 3–4. P. 201.
- 10. Uchaikin V.V., Cahoy D.O., Sibatov R.T. // Int. J. Bifurcation and Chaos. 2008. V. 18. № 9. 2717.
- 11. Псху А.В. Уравнения в частных производных дробного порядка, М.: Наука, 2005.