ON ONE PROBLE FOR HIGHER-ORDER EQUATION

A.V. Yuldasheva

National University of Uzbekistan by Mirzo Ulugbeka, 100174, Uzbekistan, Tashkent c., VUZ gorodok st.

E-mail: yuasv86@mail.ru
In this paper not well posed problem for the even-order equation is studied. The stability of the problem is restored by additional conditions and conditions to domain.

Key words: partial differential equations of higher order, not well posed problem, method of separation of variables, simple continued fractions.

Problem definition

The present paper considers for the equation

$$
\begin{equation*}
\frac{\partial^{2 k} u}{\partial x^{2 k}}-\frac{\partial^{2} u}{\partial t^{2}}=0, \quad k=2 n+1, n \in N, \tag{1}
\end{equation*}
$$

in the domain $D=\{(x, t): 0 \leq x \leq \pi, 0 \leq t \leq 2 \pi\}$ a problem with the following conditions:

$$
\begin{gather*}
\frac{\partial^{2 m} u}{\partial x^{2 m}}(0, t)=\frac{\partial^{2 m} u}{\partial x^{2 m}}(\pi, t)=0, \quad m=0,1, \ldots, k-1, \quad 0 \leq t \leq 2 \pi, \tag{2}\\
u(\alpha \pi, t)=f(t), \quad 0 \leq t \leq 2 \pi, \tag{3}
\end{gather*}
$$

where α is some constant from $(0,1)$ and $f(t)$ - is the given quite smooth function.
We shall show that if α is an irrational number, then the theorem of solution uniqueness of the problem (1), (2), (3) is valid in the class $u \in C_{x, t}^{2 k, 2}(D)$.

Note that this problem is ill-posed, since a small change in the function $f(t)$ under the norm $C^{s}(s \in N)$ may cause arbitrary large change of the solution u under the norm L_{2}.

This problem may be regularized by a side condition, for example, by a priori estimate

$$
\begin{equation*}
\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{\partial^{k} u}{\partial x^{k}}\right)^{2} d t d x \leq E^{2}, \quad 0 \leq t \leq 2 \pi \tag{4}
\end{equation*}
$$

where E is the defined constant.

[^0]
The problem well-posedness

Assume that there is some function $u \in C_{x, t}^{2 k, 2}(D)$ which satisfies the conditions (1), (2), (3), then u may be presented in the form of a series

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} \sin n x\left(a_{n} \cos n^{k} t+b_{n} \sin n^{k} t\right) \tag{5}
\end{equation*}
$$

and it follows from this representation that the function $f(t)$ should have the form

$$
\begin{equation*}
f(t)=\sum_{n=1}^{\infty} \sin n \alpha \pi\left(a_{n} \cos n^{k} t+b_{n} \sin n^{k} t\right) . \tag{6}
\end{equation*}
$$

Theorem 1. If α is a irrational number, the problem (17), (2), (3) does not have more than one solution of $u \in C_{x, t}^{2 k, 2}(D)$.

Proof. Indeed, if in (6) $f \equiv 0$, than $a_{n}=b_{n}=0$. Consequently, и $u \equiv 0$.
Remark. If α is a rational number, there is no uniqueness.
For example, let q be some natural number, then the function $u(x, t)=\sin q x \cos q^{k} t$ satisfies (1), (2) and

$$
u\left(\frac{\pi}{q}, t\right)=0, \quad 0 \leq t \leq 2 \pi
$$

Defination. We shall indicate that the irrational number α have the order Ω, if Ω is the upper boundary of the numbers ω, satisfying the inequality

$$
\left|\alpha-\frac{p}{q}\right| \frac{1}{q^{1+\omega}}
$$

for any $\frac{p}{q} \in Q$. It is known that almost all the numbers α have the order $\Omega=1$ [3, ?].
The next statement is associated with the question on the solution stability depending on α and f. Here is an example.

Theorem 2. Let α be an irrational number. Then there is a sequence 2π of periodic functions $f_{n} \in C^{\infty}(R)$, uniformly vanishing, and it is such $u_{n} \in C_{x, t}^{2 k, 2}(D)$, satisfying (I), (2) and

$$
\begin{equation*}
u_{n}(\alpha \pi, t)=f_{n}(t), \tag{7}
\end{equation*}
$$

the following relation holds

$$
\begin{equation*}
\lim _{\rightarrow \infty}\left\|u_{n}\right\|_{L_{2}(D)}=+\infty . \tag{8}
\end{equation*}
$$

Proof. Let

$$
f_{n}(t)=\frac{1}{\sqrt{n^{k}}} \sin n^{k} t
$$

then

$$
u_{n}(x, t)=\left(\sqrt{n^{k}} \sin n \alpha \pi\right)^{-1} \sin n^{k} t \sin n x .
$$

It is known that [2] there is a sequence of such integers p_{n}, q_{n} that

$$
\lim _{n \rightarrow \infty} q_{n}=+\infty, \quad\left|\alpha-\frac{p_{n}}{q_{n}}\right|<\frac{1}{q_{n}^{2}}
$$

and then the theorem statement appears from the following estimation

$$
\left|\sin q_{n} \alpha \pi\right|=\left|\sin \left(q_{n} \alpha-p_{n}\right) \pi\right|<\frac{\pi}{q_{n}} .
$$

Note, that for any given integer s there is such an irrational number α (for example, of the order $s+2$) that the solution

$$
u_{n}(x, t)=n^{-1-s}(\sin n \alpha \pi)^{-1} \sin n^{k} t \cdot \sin n x
$$

of the problem (1), (2) and $u_{n}(\alpha \pi, t)=n^{-1-s} \sin n^{k} t$ satisfies the following estimation

$$
\lim _{n \rightarrow \infty}\left\|u_{n}\right\|_{L_{2}(D)}=+\infty \lim _{n \rightarrow \infty}\left\|f_{n}\right\|_{C^{s}(D)}=0
$$

from which it is clear that the problem is ill-posed.
Further we shall show that the problem is also unstable relative to α.
Theorem 3. Let $p, q \in N, p<q$ and $\left\{\alpha_{n}\right\}$ be a sequence of irrational numbers converging to $\frac{p}{q}$. And let $u_{n} \in C_{x, t}^{2 k, 2}(D)$ be the solution of the problem (1), (2) and $u_{n}(\alpha \pi, t)=\sin q^{k} t$, then

$$
\lim _{\rightarrow \infty}\left\|u_{n}\right\|_{L_{2}(D)}=+\infty .
$$

The solution is written in the form $u_{n}(x, t)=\frac{\sin q^{k} t \cdot \sin q x}{\sin q \alpha_{n} \pi}$, from which the theorem statement is obvious.

Thus, a side condition is required.

$$
\int_{0}^{\pi} \int_{0}^{2 \pi}\left(\frac{\partial^{k} u}{\partial x^{k}}\right)^{2} d t d x \leq E^{2}
$$

Problem with a bounded solution

Let α, ε, E be some positive constants, and $\alpha \in(0,1)$.
Let $f \in L_{2}(0,2 \pi)$. The function class $u \in C_{x, t}^{2 k, 2}(D)$ satisfying (1), (2) and

$$
\begin{gather*}
\|u(\alpha \pi, \cdot)-f\|_{L_{2}(0,2 \pi)} \leq \varepsilon \tag{9}\\
\left\|\frac{\partial^{k} u}{\partial x^{k}}\right\|_{L_{2}(D)} \leq E . \tag{10}
\end{gather*}
$$

is indicated by $\Gamma(\varepsilon, E)$. The condition (9) substitutes the condition (3), and the priori estimate (10) is required for the problem to be well-posed.

We introduce the following notations

$$
\begin{gather*}
\|u\|^{2}=\sup _{x \in[0, \pi]} \int_{0}^{2 \pi} u^{2}(x, t) d t \tag{11}\\
\Delta(\varepsilon, E)=\sup _{v, w \in \Gamma(\varepsilon, E)}\|v-w\| . \tag{12}
\end{gather*}
$$

Theorem 4. Let α be a rational number, $\alpha=\frac{p}{q},(p, q)=1$ and

$$
\begin{equation*}
q^{2} \leq 2 \frac{E}{\varepsilon} \tag{13}
\end{equation*}
$$

Then

$$
\begin{equation*}
\Delta(\varepsilon, E) \leq 3 \frac{E}{q^{k}} \tag{14}
\end{equation*}
$$

If $q=\left[\left(\frac{2 E}{\varepsilon}\right)^{\frac{1}{k}}\right]$, then

$$
\Delta(\varepsilon, E) \leq 3 \sqrt{E} \sqrt{\varepsilon}
$$

Proof. Let $v, w \in \Gamma(\varepsilon, E)$, then $u=v-w \in C_{x, t}^{2 k, 2}(D)$ satisfies (1), (2) and

$$
\begin{equation*}
\|u(\alpha \pi, \cdot)\|_{L_{2}(0,2 \pi)} \leq 2 \varepsilon, \quad\left\|\frac{\partial^{k} u}{\partial x^{k}}\right\|_{L_{2}(D)} \leq 2 E . \tag{15}
\end{equation*}
$$

Since u is represented as (5), the conditions (15) are rearranged as

$$
\begin{gather*}
\sum_{n=1}^{+\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \sin ^{2} n \frac{p}{q} \pi \leq \frac{4 \varepsilon^{2}}{\pi^{2}} \tag{16}\\
\sum_{n=1}^{+\infty} n^{2 k}\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{8 E^{2}}{\pi^{2}} \tag{17}
\end{gather*}
$$

whence it follows

$$
\begin{equation*}
\sum_{n=1}^{+\infty}\left(\sin ^{2} n \frac{p}{q} \pi+n^{2 k} \frac{\varepsilon^{2}}{E^{2}}\right)\left(a_{n}^{2}+b_{n}^{2}\right) \leq \frac{8 \varepsilon^{2}}{\pi} \tag{18}
\end{equation*}
$$

From (5) we have

$$
\|u\|^{2}=\pi \max _{x \in[0, \pi]} \sum_{n=1}^{+\infty}\left(a_{n}^{2}+b_{n}^{2}\right) \sin ^{2} n x \leq \pi \sum_{n=1}^{+\infty}\left(a_{n}^{2}+b_{n}^{2}\right) .
$$

It follows from (12)

$$
\Delta^{2}(\varepsilon, E) \leq \pi \sup \left\{\sum_{n=1}^{+\infty}\left(a_{n}^{2}+b_{n}^{2}\right): a_{n}, b_{n}\right\}
$$

satisfying (18).
According to the Lagrange multiplier role we find

$$
\begin{equation*}
\Delta^{2}(\varepsilon, E) \leq 8 \varepsilon^{2} \min \left(\sin ^{2} r \frac{p}{q} \pi+r^{2 k} \frac{\varepsilon^{2}}{E^{2}}\right)^{-1}, \quad r \in N \tag{19}
\end{equation*}
$$

From (13) we obtain

$$
\sin ^{2} r \frac{p}{q} \pi+r^{2 k} \frac{\varepsilon^{2}}{E^{2}} \geq \frac{\varepsilon^{2}}{E^{2}} q^{2 k}, \quad 1 \leq r \leq q
$$

Substituting this estimation into (19) we obtain (14). The theorem has been proved.

Assume that α is an irrational number expanded into a continued fraction

$$
\alpha=\frac{1}{\alpha_{1}+\frac{1}{\alpha_{2}+\ldots}}
$$

Theorem 5. Let $\alpha \in(0,1)$ be an irrational number and $\alpha_{i} \leq K_{\alpha}$, then

$$
\begin{equation*}
\Delta(\varepsilon, E) \leq 3\left(\frac{K_{\alpha}+2}{2} \varepsilon E\right)^{\frac{1}{2}} \tag{20}
\end{equation*}
$$

Proof. To make sure that this estimation is valid, note that it follows from the theorem 4 that the estimation (19) is true for $\Delta(\varepsilon, E)$ then from the condition $\alpha_{i} \leq K_{\alpha}$ [3] we obtain

$$
\sin ^{2} r \alpha \pi \geq \frac{27}{4\left(K_{\alpha}+2\right)^{2} r^{2}}, r \geq 1
$$

Then

$$
\min _{r \in N}\left\{\frac{27}{4\left(K_{\alpha}+2\right)^{2} r^{2}}+r^{2 k} \frac{\varepsilon^{2}}{E^{2}}\right\} \geq \frac{\varepsilon}{E} \frac{\sqrt{27}}{\left(K_{\alpha}+2\right)} .
$$

Thus, the required estimation follows from the above

$$
\Delta^{2}(\varepsilon, E) \leq 9 \varepsilon E\left(\frac{K_{\alpha}+2}{2}\right)
$$

References

1. Frosali G. Papi. On the stability of the Dirichlet problem for the vibrating string equation. Ann. Scuola Norm. Sup. Pisa, 1979, vol. 6, pp. 719-728.
2. Yuldasheva A.V. Ob odnoj zadache dlya uravneniya vysokogo poryadka [A problem for the equation of high order]. Doklady Akademii nauk Respubliki Uzbekistan - Reports of the Academy of Sciences of the Republic of Uzbekistan, 2012, no. 5, pp. 11-14.
3. Hinchin A.Ya. Cepnye drobi [Continued fractions]. Leningrad, 1961. 112 p.

[^0]: Yuldasheva Asal Victorovna - Ph.D. (Phys. \& Math.), Lecturer of the Dep. Differential Equations and Mathematical Physics, of the National University of Uzbekistan, Tashkent.
 (C)Yuldasheva A.V., 2014.

